Apr30 2017 Kumpulan Soal Trigonometri dan Pembahasannya 1. Dari segitiga ABC diketahui 60 30 β α dan. Contoh Soal Bab Trigonometri Dan Pembahasannya. Aug 25 2019 120 soal dan pembahasan limit fungsi trigonometri 1. 2 2 x -5 sin x -3 0 2. Un 2017 himpunan penyelesaian persamaan cos 2x. PQ 2 RQ 2 RP 2 2RQ.
Turunan fungsi trigonometri merupakan salah satu materi matematika yang dipelajari pada jenjang SMA, tepatnya di kelas XI. Berikut ini kami sajikan soal-soal yang berkaitan dengan materi turunan fungsi trigonometri, yang disertai dengan pembahasan. Soal dan PembahasanNomor 1Tentukan , jika diketahui .PembahasanMisalkan $fx = \sin x$, sehingga $$f\textcolor{maroon}{x+h} = \sin \textcolor{maroon}{x+h}$$ Berdasarkan definisi turunan fungsi, diperoleh $$\begin{aligned} D_xy &= f'x \\ &= \lim_{h \to 0} \frac{\textcolor{green}{fx+h}-\textcolor{blue}{fx}}{h} \\ &= \lim_{h \to 0} \frac{\textcolor{green}{\sin x+h}-\textcolor{blue}{\sin x}}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-\sin x+\cos x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-1+\cos x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-1}{h}+\lim_{h \to 0} \frac{\cos x \sin h}{h} \\ &= \sin x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\cos h-1}{h}}+\cos x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\sin h}{h}} \end{aligned}$$ Karena $$\lim_{h \to 0} \frac{\cos h-1}{h}=0 \quad \text{dan} \quad \lim_{h \to 0} \frac{\sin h}{h}$$ maka $$\begin{aligned} f'x &= \sin x \cdot \textcolor{red}{0}+\cos x \cdot \textcolor{red}{1} \\ &= 0+\cos x \\ &= \cos x \end{aligned}$$Nomor 2Tentukan , jika diketahui .PembahasanMisalkan $fx = \cos x$, sehingga $$f\textcolor{maroon}{x+h} = \cos \textcolor{maroon}{x+h}$$ Berdasarkan definisi turunan fungsi, diperoleh $$\begin{aligned} f'x &= \lim_{h \to 0} \frac{\textcolor{green}{fx+h}-\textcolor{blue}{fx}}{h} \\ &= \lim_{h \to 0} \frac{\textcolor{green}{\cos x+h}-\textcolor{blue}{\cos x}}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-\cos x-\sin x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-1-\sin x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-1}{h}-\lim_{h \to 0} \frac{\sin x \sin h}{h} \\ &= \cos x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\cos h-1}{h}}-\sin x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\sin h}{h}} \end{aligned}$$ Karena $$\lim_{h \to 0} \frac{\cos h-1}{h}=0 \quad \text{dan} \quad \lim_{h \to 0} \frac{\sin h}{h}$$ maka $$\begin{aligned} f'x &= \cos x \cdot \textcolor{red}{0}-\sin x \cdot \textcolor{red}{1} \\ &= 0-\sin x \\ &= -\sin x \end{aligned}$$Nomor 3Tentukan hasil dari .PembahasanPertama, nyatakan $\tan x$ sebagai hasil bagi antara $\sin x$ dan $\cos x$. $$D_x \tan x = D_x \left \frac{\sin x}{\cos x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \tan x &= D_x \left \frac{\textcolor{blue}{\sin x}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{\sin x} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{\sin x} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{\cos x \cdot \cos x - \sin x -\sin x}{\cos^2 x} \\ &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\ &= \frac{1}{\cos^2 x} \\ &= \sec^2 x \end{aligned}$$Nomor 4Tentukan hasil dari .PembahasanPertama, nyatakan $\csc x$ sebagai kebalikan dari $\sin x$. $$D_x \csc x = D_x \left \frac{1}{\sin x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \csc x &= D_x \left \frac{\textcolor{blue}{1}}{\textcolor{green}{\sin x}} \right \\ &= \frac{D_x \textcolor{blue}{1} \cdot \textcolor{green}{\sin x} - \textcolor{blue}{1} \cdot D_x \textcolor{green}{\sin x}}{\textcolor{green}{\sin x}^2} \\ &= \frac{0 \cdot \sin x - 1 \cdot \cos x}{\sin^2 x} \\ &= \frac{0-\cos x}{\sin^2 x} \\ &= \frac{-\cos x}{\sin x \cdot \sin x} \\ &= - \frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} \\ &= - \csc x \cdot \cot x \end{aligned}$$Nomor 5Tentukan hasil dari .PembahasanPertama, nyatakan $\sec x$ sebagai kebalikan dari $\cos x$. $$D_x \sec x = D_x \left \frac{1}{\cos x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \sec x &= D_x \left \frac{\textcolor{blue}{1}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{1} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{1} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{0 \cdot \cos x - 1 \cdot - \sin x}{\cos^2 x} \\ &= \frac{0+\sin x}{\cos^2 x} \\ &= \frac{\sin x}{\cos x \cdot \cos x} \\ &= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\ &= \sec x \cdot \tan x \end{aligned}$$Nomor 6Tentukan hasil dari .PembahasanPertama, nyatakan $\cot x$ sebagai hasil bagi antara $\cos x$ dan $\sin x$. $$D_x \cot x = D_x \left \frac{\cos x}{\sin x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \cot x &= D_x \left \frac{\textcolor{blue}{\cos x}}{\textcolor{green}{\sin x}} \right \\ &= \frac{D_x \textcolor{blue}{\cos x} \cdot \textcolor{green}{\sin x} - \textcolor{blue}{\cos x} \cdot D_x \textcolor{green}{\sin x}}{\textcolor{green}{\sin x}^2} \\ &= \frac{-\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x} \\ &= \frac{-\sin^2 x-\cos^2 x}{\sin^2 x} \\ &= \frac{-\sin^2 x+\cos^2 x}{\sin^2 x} \\ &= \frac{-1}{\sin^2 x} \\ &= -\csc^2 x \end{aligned}$$Nomor 7Tentukan , jika diketahui .PembahasanBerdasarkan aturan penjumlahan pada turunan, diperoleh $$\begin{aligned} D_xy &= D_x\textcolor{red}{2\sin x}+\textcolor{blue}{3\cos x} \\ &= D_x\textcolor{red}{2 \sin x}+D_x\textcolor{blue}{3\cos x} \\ &= 2\cdot D_x \sin x+3 \cdot D_x \cos x \\ &= 2 \cdot \cos x + 3 \cdot -\sin x \\ &= 2\cos x-3\sin x \end{aligned}$$Nomor 8Tentukan , jika diketahui .PembahasanMisalkan $u = \sin x$, sehingga $y=u^2$. Turunan dari kedua fungsi ini adalah $$\begin{aligned} &u = \sin x &&\Longrightarrow \quad \frac{du}{dx} = \cos x \\ &y = u^2 &&\Longrightarrow \quad \frac{dy}{du} = 2u \end{aligned}$$ Berdasarkan Aturan Rantai diperoleh $$\begin{aligned} D_xy &= \frac{dy}{dx} \\ &= \frac{dy}{du} \cdot \frac{du}{dx} \\ &= 2 \textcolor{blue}{u} \cdot \cos x \\ &= 2 \textcolor{blue}{\sin x} \cos x \end{aligned}$$Nomor 9Tentukan , jika diketahui .PembahasanBerdasarkan aturan penjumlahan, diperoleh $$\begin{aligned} D_xy &= D_x\cos^2 x + \sin^2 x \\ &= \textcolor{red}{D_x\cos^2 x} + \textcolor{blue}{D_x \sin^2 x} \end{aligned}$$ Hasil dari $\textcolor{red}{D_x\cos^2 x}$ dan $\textcolor{blue}{D_x \sin^2 x}$ dapat dihitung menggunakan Aturan Rantai. $$\begin{aligned} D_xy &= \textcolor{red}{2 \cos x -\sin x} + \textcolor{blue}{2\sin x \cos x} \\ &= -2\sin x\cos x + 2 \sin x \cos x \\ &= 0 \end{aligned}$$ Cara yang lebih mudah adalah memanfaatkan identitas trigonometri $\cos^2x+\sin^2x=1$. $$\begin{aligned} D_xy &= D_x \textcolor{teal}{\cos^2 x + \sin^2 x} \\ &= D_x \textcolor{teal}{1} \\ &= 0 \end{aligned}$$Nomor 10Tentukan , jika diketahui .PembahasanBerdasarkan aturan pengurangan, diperoleh $$\begin{aligned} D_xy &= D_x1-\sin^2 x \\ &= \textcolor{red}{D_x1}-\textcolor{blue}{D_x \sin^2 x} \\ &= \textcolor{red}{0}-\textcolor{blue}{2\sin x\cos x} \\ &= -2\sin x\cos x \end{aligned}$$Nomor 11Tentukan , jika diketahui .PembahasanBerdasarkan aturan pembagian, diperoleh $$\begin{aligned} D_xy &= D_x \left \frac{\textcolor{blue}{\sin x+\cos x}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{\sin x+\cos x} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{\sin x+\cos x} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{\cos x-\sin x \cdot \cos x-\sin x+\cos x-\sin x}{\cos^2 x} \\ &= \frac{\cos^2 x-\textcolor{red}{\sin x\cos x} + \sin^2 x + \textcolor{red}{\sin x\cos x}}{\cos^2x} \\ &= \frac{\cos^2x+\sin^2x}{\cos^2x} \\ &= \frac{1}{\cos^2 x} \\ &= \sec^2x \end{aligned}$$Nomor 12Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{\sin x}\textcolor{blue}{\cos x} \\ &= D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\cos x} \\ &= \cos x \cdot \cos x + \sin x \cdot -\sin x \\ &= \cos^2 x-\sin^2 x \end{aligned}$$Nomor 13Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{\sin x} \textcolor{blue}{\tan x} \\ &= D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{\tan x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\tan x} \\ &= \cos x \cdot \tan x + \sin x \cdot \sec^2 x \\ &= \cos x \cdot \frac{\sin x}{\cos x} + \sin x \cdot \frac{1}{\cos^2 x} \\ &= \sin x+\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} \\ &= \sin x + \tan x \sec x \end{aligned}$$Nomor 14Tentukan , jika diketahui .PembahasanBerdasarkan aturan pembagian, diperoleh $$\begin{aligned} D_xy &= D_x \left \frac{\textcolor{red}{\sin x}}{\textcolor{blue}{x}} \right \\ &= \frac{D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{x}-\textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{x}}{\textcolor{blue}{x}^2} \\ &= \frac{\cos x \cdot x-\sin x \cdot 1}{x^2} \\ &= \frac{x\cos x-\sin x}{x^2} \end{aligned}$$Nomor 15Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{x^2} \textcolor{blue}{\cos x} \\ &= D_x \textcolor{red}{x^2} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{x^2} \cdot D_x \textcolor{blue}{\cos x} \\ &= 2x \cdot \cos x + x^2 \cdot -\sin x \\ &= 2x\cos x-x^2\sin x \end{aligned}$$Nomor 16Tentukan , jika diketahui .PembahasanBerdasarkan aturan rantai, diperoleh $$\begin{aligned} D_xy &= D_x \tan^2 x \\ &= 2\tan x \cdot \textcolor{blue}{D_x \tan x} \\ &= 2\tan x \cdot \textcolor{blue}{\sec^2 x} \end{aligned}$$Nomor 17Tentukan , jika diketahui .PembahasanBerdasarkan aturan rantai, diperoleh $$\begin{aligned} D_xy &= D_x \sec^3 x \\ &= 3\sec^2 x \cdot \textcolor{blue}{D_x \sec x} \\ &= 3\sec^2 x \cdot \textcolor{blue}{\sec x \tan x} \\ &= 3\sec^3 x \tan x \end{aligned}$$Nomor 18Gunakan identitas trigonometri dan aturan perkalian, untuk menentukan .PembahasanBerdasarkan identitas trigonometri $\sin 2x = 2\sin x\cos x$ dan aturan perkalian, diperoleh $$\begin{aligned} D_x \sin 2x &= D_x 2\sin x\cos x \\ &= 2 \cdot D_x \textcolor{red}{\sin x}\textcolor{blue}{\cos x} \\ &= 2 \cdot [D_x\textcolor{red}{\sin x} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\cos x}] \\ &= 2 \cdot [\cos x \cdot \cos x + \sin x \cdot -\sin x] \\ &= 2 \cdot [\cos^2 x-\sin^2 x] \\ &= 2 \cos 2x \end{aligned}$$ ContohSoal Cerita Aplikasi Turunan. martha yunanda contoh soal. Dalam halaman ini, akan diberikan beberapa permasalahan atau soal soal cerita tentang turunan beserta pembahasannya. Adapun soal ini bisa dijadikan sebagai contoh soal SBMPTN tentang turunan, karena soal-soal ini saya ambil dari sebuah buku persiapan menghadapi tes SBMPTN. Rumus Turunan Fungsi Trigonometri dan Perluasannya – Rumus turunan fungsi trigonometri penting untuk diketahui para siswa sekolah menengah saat belajar matematika. Trigonometri berupa fungsi sebuah sudut digunakan untuk menghubungkan sudut-sudut dengan sisi-sisi segitiga. Dengan kata lain, trigonometri merupakan ilmu yang digunakan untuk mengukur segitiga. Ketika mempelajari trigonometri, akan ada beberapa identitas umum yang digunakan, mulai dari fungsi sinus, cosines, tangen, secan, cosecan, dan kotangen. Keenam identitas trigonometri tersebut diterapkan dalam sejumlah rumus. Identitas dan rumus ini menunjukkan gabungan antara fungsi serta digunakan untuk menemukan sudut segitiga. Lebih lanjut, rumus trigonometri ini dikembangkan lagi menjadi rumus turunan fungsi trigonometri. Sesuai dengan sebutannya, fungsi ini untuk menemukan turunan dari fungsi trigonometri atau tingkat perubahan yang terjadi terkait suatu variabel. Dalam hal ini, terdapat beberapa rumus khusus dalam turunan fungsi trigonometri. Sebagai materi dasar, penting untuk mengetahui pengertian dari turunan fungsi trigonometri, berbagai rumus, dan cara operasinya. Selain rumus umum, ada juga perluasan turunan fungsi trigonometri lain yang sering digunakan. Perluasan turunan fungsi trigonometri ini digunakan jika terjadi pada beberapa kondisi variabel tertentu. Berikut beberapa rumus turunan fungsi trigonometri dan rumus perluasannya yang perlu kalian ketahui. Penemu Rumus Turunan Fungsi TrigonometriPengertian Turunan dan Turunan Fungsi1. Pengertian dari Turunan2. Pengertian dari Turunan FungsiRumus Dasar dari Turunan dari Turunan FungsiMengenal Trigonometri dan IdentitasnyaRumus Turunan Fungsi Trigonometri DasarRumus Perluasan Turunan Fungsi TrigonometriContoh Soal Sir Isaac Newton. Gottfried Wilhem Leibniz. Turunan merupakan salah satu cabang diferensial kalkulus. Sejarah perkembangannya juga berhubungan erat dengan perkembangan kalkulus. Konsep turunan dipikirkan pada saat yang bersamaan oleh Sir Isaac Newton 1642-1727, ahli matematika dan fisika bangsa Inggris dan Gottfried Wilhem Leibniz 1646-1716, ahli matematika bangsa Jerman. Sejarah perkembangan kalkulus dibagi menjadi beberapa zaman sebagai berikut. Pada zaman kuno, pemikiran integral kalkulus sudah muncul, tetapi belum dikembangkan secara baik dan lebih teratur. Fungsi utama dari integral kalkulus adalah perhitungan volume dan luas yang ditemukan kembali di Papirus Moskwa dari Mesir. Pada Papirus tersebut, orang Mesir dapat menghitung volume piramida yang mereka bangun. Selanjutnya, Archimedes mengembangkan pemikiran ini lebih jauh lagi. Pada zaman pertengahan, matematikawan yang berasal dari India bernama Aryabhata, menggunakan konsep kecil tak terhingga pada 499 dan menunjukkan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian membawa Bashkara II pada abad ke-12 melakukan pengembangan terhadap bentuk awal turunan. Pada abad ke-12, seorang Persia bernama Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Turunan memiliki banyak aplikasi dalam bidang kuantitatif. Salah satunya adalah hukum gerak Newton yang kedua yang menyatakan bahwa turunan dari momentum suatu benda juga sama dengan gaya yang diberikan kepada benda. Laju reaksi dari reaksi kimia juga termasuk turunan. Dengan fungsinya dalam bidang ekonomi, turunan juga dapat memberikan strategi yang terbaik untuk perusahaan yang sedang dalam persaingan. Turunan dapat menghitung efektivitas waktu dan tenaga kerja agar biaya menjadi minimum. Selanjutnya, turunan juga dapat menghitung berapa jam pabrik harus bekerja agar keuntungan menjadi maksimal. Dalam materi turunan ini banyak yang berpendapat sangat sulit untuk dikerjakan, terlebih materi turunan ini termasuk dalam materi pokok matematika, turunan merupakan cabang dari pelajaran kalkulus, pada dasarnya materi kalkulus ini memerlukan ketelitian dan kecermatan dalam menggerakkannya. Oleh karena itu, artikel ini ditulis dengan tujuan mempermudah dalam pembelajaran para siswa. Artikel ini menyajikan materi beserta soal dan pembahasan yang mudah dipahami. Diferensial kalkulus itu sangat penting peranannya dalam kehidupan sehari-hari, dunia bisnis maupun dalam dunia sains. Dengan mempelajari diferensial kalkulus, dapat membantu arsitek dalam membuat konstruksi bangunan, melakukan pencampuran bahan bangunan, membuat tiang-tiang, langit-langit pada bangunan. Penggunaan lain dalam difererensial kalkulus, yaitu dalam pembuatan pesawat dan kapal laut. Turunan juga memiliki fungsi penting, apalagi nantinya dapat berguna dalam bidang ekonomi, dalam menghitung nilai minimum dan maksimum sebuah keuangan. Mempelajari turunan tidaklah sulit, hanya saja perlu ketelitian agar turunan yang dihasilkan nanti benar. Selain itu, turunan hanya menggunakan konsep hitung yang dasar seperti perkalian, pembagian, penjumlahan, dan pengurangan. Tanpa ketelitian mengerjakan turunan memang terkadang sulit dan perlu diperiksa ulang hingga benar. Pengertian Turunan dan Turunan Fungsi 1. Pengertian dari Turunan Turunan atau deriviatif adalah pengukuran terhadap fungsi yang berubah seiring perubahan nilai input. Secara umum, turunan menyatakan proses suatu besaran berubah akibat perubahan besaran yang lainnya. Contohnya turunan dari posisi sebuah benda bergerak terhadap waktu ialah kecepatan sesaat oleh objek tersebut. Proses dalam menemukan sebuah turunan disebut dengan diferensiasi, sedangkan kebalikan dari sebuah turunan disebut dengan anti turunan. Teorema fundamental kalkulus mengatakan bahwa anti turunan, yaitu sama dengan integrasi. Turunan dan integral adalah dua fungsi penting dalam kalkulus. . . . . Dengan keterangan adalah simbol untuk turunan pertama. adalah simbol untuk turunan kedua. adalah simbol untuk turunan ketiga. Simbol yang lainnya selain dan ialah dan. 2. Pengertian dari Turunan Fungsi Turunan fungsi diferensial, yaitu suatu fungsi lain daripada sesuatu fungsi sebelumnya, misalkan dalam fungsi f menjadi f’ yang memiliki nilai tidak beraturan. Suatu konsep dari turunan yang menjadi bagian utama dalam kalkulus ditemukan oleh seorang ilmuwan ahli matematika dan juga ahli fisika berkebangsaan Inggris bernama Sir Isaac Newton dan ahli matematika dari Jerman bernama Gottfried Wilhelm Leibniz. Umumnya, turunan diferensial ini biasa dipakai sebagai suatu alat dalam menyelesaikan berbagai macam masalah-masalah di bidang geometri dan juga mekanika. Suatu konsep turunan fungsi yang secara universal atau menyeluruh banyak sekali digunakan di dalam berbagai bidang keilmuan. Sebut saja dalam bidang ekonomi digunakan untuk menghitung berupa biaya total atau total penerimaan. Adapun dalam bidang biologi digunakan untuk menghitung laju pertumbuhan organisme. Selanjutnya, dalam bidang fisika digunakan untuk menghitung kepadatan kawat. Untuk bidang kimia digunakan untuk menghitung laju pemisahan. Terakhir, dalam bidang geografi dan sosiologi digunakan untuk menghitung laju pertumbuhan penduduk dan masih banyak lagi. Rumus Dasar dari Turunan dari Turunan Fungsi Menenai soal aturan-aturan yang ada didalam kosep turunan fungsi adalah sebagai berikut fx, menjadi f'x 0. Apabila fx x, maka f’x 1. Aturan pangkat apabila fx xn, maka f’x n X n – 1. Aturan kelipatan konstanta apabila kf x k. f’x. Aturan rantai apabila f o g x f’ g x. g’x. Mengenal Trigonometri dan Identitasnya Sebelum mengetahui rumus turunan fungsi trigonometri, perlu dipahami terlebih dahulu apa yang dimaksud dengan fungsi trigonometri. Seperti disebutkan sebelumnya trigonometri merupakan fungsi yang digunakan untuk menghubungkan sudut-sudut dan sisi-sisi dalam segitiga. Dalam hal ini, sudut sinus, cosinus, dan tangent merupakan fungsi utama dari trigonometri. Kemudian dari ketiga fungsi ini diturunkan menjadi fungsi trigonometri lainnya yaitu secan, cosecan, dan kotangen. Berikut karakteristik dari fungsi dasar trigonometri yang perlu kalian pahami Sinus, yaitu perbandingan sisi depan sudut segitiga dengan sisi miring. Perbandingan ini digunakan dengan catatan segitiga tersebut berupa siku-siku, atau salah satu sudutnya memiliki besaran 90 derajat. Untuk fungsi ini, nilai sinus positif berada di kuadran I dan II, sedangkan kuadran III dan IV berupa nilai negatif. Cosinus, yaitu perbandingan sisi segitiga yang terletak di sudut dengan sisi miring. Sama seperti sinus, perbandingan ini digunakan dengan catatan segitiga tersebut adalah segitiga siku-siku atau salah satu sudutnya memiliki besaran 90 derajat. Namun, dalam perbandingan ini nilai positif berada di kuadran I dan IV, sedangkan kuadran II dan III berupa nilai negatif. Tangen, yaitu perbandingan sisi segitiga yang terletak di depan sudut dengan sisi segitiga di bagian sudut. Perbandingan ini digunakan dengan catatan segitiga tersebut berupa siku-siku, atau salah satu sudutnya memiliki besaran 90 derajat. Untuk perbandingan ini, nilai positif berada di kuadran I dan III, sedangkan kuadran II dan IV berupa nilai negatif. Rumus Turunan Fungsi Trigonometri Dasar Setelah memahami fungsi dasar trigonometri, berikutnya perlu diketahui turunan fungsi trigonometri. Fungsi turunan ini tidak lain digunakan untuk mengetahui rumus turunan dari fungsi trigonometri dasar. Berikut beberapa rumus turunan fungsi trigonometri dasar yang perlu kalian ketahui Turunan dari f x = sin x adalah f x = cos x. Turunan dari f x = cos x adalah f x = -sin x. Turunan dari f x = tan x adalah f x = sec2 x. Turunan dari f x = kotangen x adalah f x = -cosecan2 x. Turunan dari f x = secan x adalah f x = sec x . tan x. Turunan dari f x = cosecan x adalah f x = -cosecan x . cotangen x. Rumus Perluasan Turunan Fungsi Trigonometri Selain beberapa rumus turunan fungsi trigonometri dasar, terdapat beberapa rumus perluasan yang tak kalah penting untuk diketahui. Fungsi perluasan ini digunakan jika ditemukan beberapa kondisi tertentu. Pertama, rumus turunan yang didapat dari turunan u terhadap x, dan fungsi perluasan kedua didapat jika variabel sudut trigonometrinya adalah ax+b. Berikut penjelasan rumusnya. Rumus perluasan turunan fungsi trigonometri I Turunan dari f x = sin u adalah f x = cos u . u’. Turunan dari f x = cos u adalah f x = -sin u . u’. Turunan dari f x = tan u adalah f x = sec2u . u’. Turunan dari f x = cot u adalah f x = -csc2 u . u’. Turunan dari f x = sec u adalah f x = sec u tan u . u’. Turunan dari f x = csc u adalah f x = -csc u cot u . u’. Rumus perluasan turunan fungsi trigonometri II Turunan dari f x = sin ax + b adalah f x = a cos ax + b. Turunan dari f x = cos ax + b adalah f x = -a sin ax + b. Turunan dari f x = tan ax + b adalah f x = a sec2 ax +b. Turunan dari f x = cot ax + b adalah f x = -a csc2 ax+b. Turunan dari f x = sec ax + b adalah f x = a tan ax + b . sec ax + b. Turunan dari f x = csc ax + b adalah f x = -a cot ax + b . csc ax + b. Contoh Soal Berikut ini terdapat beberapa contoh soal turunan trigonometri. Contoh 1 Turunkan fungsi berikut ini. y = 5 sin x Pembahasan y = 5 sin x y’ = 5 cos x Contoh 2 Diberikan fungsi fx = 3 cos x Tentukan nilai dari f /2 Pembahasan Perhatikan rumus turunan untuk fungsi trigonometri berikut ini. y = sin x adalah y = cos x. y = cos x adalah y = -sin x. y = tan x adalah y = sec2 x. y = cosec x adalah y = -cosec x cot x. y = sec x adalah y = sec x . tan x. y = cot x adalah y = -cosec2x. fx = 3 cos x. f x = 3 -sin x. f x = -3 sin x. Untuk x = /2 diperoleh nilai f x. f /2 = -3 sin /2 = -3 1 = -3. Contoh 3 Tentukan turunan pertama dari y = -4 sin x. Pembahasan y = -4 sin x. y’ = -4 cos x. Contoh 4 Diberikan y = -2 cos x. Tentukan y’. Pembahasan y = -2 cos x y’ = -2 -sin x y’ = 2 sin x Contoh 5 Tentukan y’ dari y = 4 sin x + 5 cos x. Pembahasan y = 4 sin x + 5 cos x y’ = 4 cos x + 5 -sin x y = 4 cos x -5 sin x Contoh 6 Tentukan turunan dari y = 5 cos x -3 sin x. Pembahasan y = 5 cos x -3 sin x y’ = 5 -sin x – 3 cos x y’ = -5 sin x -cos x Contoh 7 Tentukan turunan dari y = sin 2x + 5 Pembahasan Dengan aplikasi turunan berantai maka untuk y = sin 2x + 5 y = cos 2x + 5 . 2 -> Angka 2 diperoleh dari menurunkan 2x + 5 y’ = 2 cos 2x + 5 Contoh 8 Tentukan turunan dari y = cos 3x -1 Pembahasan Dengan aplikasi turunan berantai maka untuk y = cos 3x -1 y = -sin 3x -1 . 3 -> Angka 3 diperoleh dari menurunkan 3x -1 Hasil akhirnya adalah y’ = -3 sin 3x -1 Contoh 9 Tentukan turunan dari y = sin2 2x -1. Pembahasan Turunan berantai y = sin2 2x -1 y’ = 2 sin 2-1 2x -1 . cos 2x -1 . 2 y’ = 2 sin 2x -1 . cos 2x -1 . 2 y’ = 4 sin 2x -1 cos 2x -1 Contoh 10 Diketahui fx = sin3 3 – 2x Turunan pertama fungsi f adalah f maka f x =…. Pembahasan fx = sin3 3 – 2x Turunkan sin3 nya, Turunkan sin 3 – 2xnya, Turunkan 3 – 2xnya. Hasilnya dikalikan semua seperti ini fx = sin3 3 – 2x f x = 3 sin 2 3 -2x . cos 3 -2x . -2 f x = -6 sin 2 3 -2x – cos 3 -2x Sampai sini sudah selesai, tetapi di pilihan belum terlihat, diotak-atik lagi pakai bentuk sin 2 = 2 sincos f x = -6 sin 2 3 -2x . cos 3 -2x f x = -3 . 2 sin 3 -2x . sin 3 – 2x . cos 3 -2x f x = -3 . 2 sin 3 -2x . cos 3 – 2x . sin 3 -2x _____________________ sin 2 3 -2x f x = -3 sin 23 – 2x . sin 3 -2x f x = -3 sin 6 – 4x sin 3 -2x atau f x = -3 sin 3 -2x sin 6 – 4x Contoh 11 Diketahui fungsi fx = sin2 2x + 3 dan turunan dari f adalah f’. Maka f’ x = … Pembahasan Turunan berantai fx = sin2 2x + 3 Turunkan sin2 nya, Turunkan sin 2x + 3nya, Turunkan 2x + 3nya. f x = 2 sin 2x + 3 . cos 2x + 3 . 2 f x = 4 sin 2x + 3 . cos 2x + 3 Demikianlah penjelasan tentang turunan fungsi trigonometri, semoga bermanfaat dan sampai jumpa di pembahsan selanjutnya. Jika ada yang masih kurang jelas atau pertanyaan lain terkait turunan fungsi trigonometri, sampaikan di kolom komentar. BACA JUGA Apa Itu Sifat Komutatif Pengertian, Rumus, dan Contoh Soalnya Limit Tak Hingga Pengertian, Soal, dan Pembahasan, serta Sejarahnya Pengertian Invers Matriks Konsep, Sifat, dan Istilah-Istilahnya Pengertian Konstanta, Variabel, dan Suku Beserta Contoh Soalnya Sifat Logaritma Pengertian, Fungsi, Rumus, dan Contoh Soalnya ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien
Contohsoal turunan fungsi implisit trigonometri. Untuk x = π /2 diperoleh nilai f '(x) f '(π /2) =
Soal dan Pembahasan Turunan Fungsi Trigonometri. Rumus-rumus yang akan digunakan dalam penyelesaian turunan fungsi trigonometri adalah sebagai berikut 1. Jika fx = sin x maka f'x = cos x 2. Jika fx = cos x maka f'x = -sin x 3. Jika fx = tan x maka f'x = sec²x Tips Setiap fungsi trigonometri yang hurufnya dimulai dengan huruf c, maka turunannya bernilai negatif Soal dan Pembahasan Turunan Fungsi Trigonometri Soal 1 Turunan pertama fungsi y = cos 2x³ - x² ialah..... A. y' = sin 2x³ - x² B. y' = -sin 2x³ - x² C. y' = 6x² - 2x cos 2x³ - x² D. y' = 6x² - 2x sin 2x³ - x² E. y' = -6x² - 2x sin 2x³ - x² Pembahasan y = cos 2x³ - x² Misalkan ux = 2x³ - x² maka u'x = 6x² - 2x y = cos ux y' = -sin ux . u'x y' = -sin 2x³ - x² . 6x² - 2x y' = -6x² - 2x.sin2x³ - x² JAWABAN E Soal 2 Jika y = x² sin 3x, maka dy/dx = ..... A. 2x sin 3x + 2x² cos x B. 2x sin 3x + 3x² cos 3x C. 2x sin x + 3x² cos x D. 3x cos 3x + 2x² sin x E. 2x² cos x + 3x sin 3x Pembahasan y = x² sin 3x Misalkan ux = x² maka u'x = 2x vx = sin 3x maka v'x = 3 cos 3x y = ux . vx y' = u'x.vx + ux.v'x = 2x . sin 3x + x². 3 cos 3x = 2x sin 3x + 3x²cos 3x JAWABAN B Soal 3 Diketahui fungsi Fx = sin²2x + 3 dan turunan pertama dari F adalah F'. Maka F'x =..... A. 4 sin 2x + 3 cos 2x + 3 B. -2 sin 2x + 3 cos 2x + 3 C. 2 sin 2x + 3 cos 2x + 3 D. -4 sin 2x + 3 cos 2x + 3 E. sin 2x + 3 cos 2x + 3 Pembahasan Fx = sin²2x + 3 Misalkan ux = sin 2x + 3, maka u'x = cos 2x + 3 . 2 = 2cos 2x + 3 2 berasal dari turunan 2x + 3 Fx = [ux]² F'x = 2[ux]¹ . u'x = 2sin 2x + 3 . 2cos 2x + 3 = 4sin 2x + 3 cos 2x + 3 JAWABAN A Soal 4 Diketahui fx = sin³ 3 - 2x. Turunan pertama fungsi f adalah f' maka f'x = ..... A. 6 sin² 3 - 2x cos 3 - 2x B. 3 sin² 3 - 2x cos 3 - 2x C. -2 sin² 3 - 2x cos 3 - 2x D. -6 sin 3 - 2x cos 6 - 4x E. -3 sin 3 - 2x sin 6 - 4x Pembahasan fx = sin³ 3 - 2x Misalkan ux = sin 3 - 2x, maka u'x = cos 3 - 2x . -2 u'x = -2cos 3 - 2x -2 berasal dari turunan 3-2x fx = [ux]³ f'x = 3[ux]² . u'x f'x = 3sin²3 - 2x . -2cos 3 - 2x = -6 sin²3 - 2x . cos 3 - 2x = -3 . 2 sin 3 -2x.sin 3 -2x.cos 3 - 2x = -3 . sin 3 - 2x. 2 sin 3 - 2x.cos 3 - 2x ingat sin 2x = 2 sin x = -3 sin 3 - 2x sin 23 - 2x = -3 sin 3 - 2x sin 6 - 4x JAWABAN E Soal 5 Turunan pertama dari Fx = sin³ 5 - 4x adalah F'x = ..... A. 12 sin² 5 - 4x cos 5 - 4x B. 6 sin 5 - 4x sin 10 - 8x C. -3 sin² 5 - 4x cos 5 - 4x D. -6 sin 5 - 4x sin 10 - 8x E. -12 sin² 5 - 4x cos 10 - 8x Pembahasan Fx = sin³ 5 - 4x Misalkan ux = sin 5 - 4x, maka u'x = cos 5 - 4x . -4 u'x = -4cos 5 - 4x -4 berasal dari turunan 5 - 4x fx = [ux]³ f'x = 3[ux]² . u'x f'x = 3sin²5 - 4x . -4cos 5 - 4x = -12 sin²5 - 4x . cos 5 - 4x = -6 . 2 sin 5 - 4x.sin 5 - 4x.cos 5 - 4x = -6 . sin 5 - 4x. 2 sin 5 - 4x.cos 5 - 4x ingat sin 2x = 2 sin x = -6 sin 5 - 4x sin 25 - 4x = -6 sin 5 - 4x sin 10 - 8x JAWABAN D Soal 6 Jika fx = $\frac{sin x + cos x}{sin x}$, sin x ≠ 0 dan f' adalah turunan f, maka f'$\frac{π}{2}$ = ..... A. -2 B. -1 C. 0 D. 1 E. 2 Pembahasan fx = $\frac{sin x + cos x}{sin x}$ Misalkan * ux = sin x + cos x , maka u'x = cos x - sin x * vx = sin x, maka v'x = cos x fx = $\frac{ux}{vx}$ f'x = $\frac{u'x.vx-ux.v'x}{[vx]^{2}}$ = $\frac{cos x - sin x.sin x-sin x + cos x.cos x}{[sin x]^{2}}$ f'$\frac{π}{2}$ = $\frac{cos \frac{π}{2} - sin \frac{π}{2}.sin \frac{π}{2}-sin \frac{π}{2} + cos \frac{π}{2}.cos \frac{π}{2}}{[sin \frac{π}{2}]^{2}}$ f'$\frac{π}{2}$ = $\frac{0 - 1.1-1 + 0.0}{1^{2}}$ f'$\frac{π}{2}$ = $\frac{-1 - 0}{1}$ f'$\frac{π}{2}$ = -1 JAWABAN B Soal 7 Turunan fungsi y = tan x adalah..... A. cotan x B. cos² x C. sec² x + 1 D. cotan² x + 1 E. tan²x + 1 Pembahasan y = tan x y = $\frac{sin x}{cos x}$ Misalkan ux = sin x, maka u'x = cos x vx = cos x, maka v'x = -sin x y = $\frac{ux}{vx}$ y = $\frac{u'x.vx-ux.v'x}{[vx]^{2}}$ = $\frac{cos x-sin x . -sin x}{[cos x]^{2}}$ = $\frac{cos^{2}x+ sin^{2}x}{cos^{2}x}$ = $\frac{sin^{2}x+ cos^{2}x}{cos^{2}x}$ = $\frac{sin^{2}x}{cos^{2}x}$ + $\frac{cos^{2}x}{cos^{2}x}$ = $\frac{sin x}{cos x}^{2}$ + 1 = tan x² + 1 = tan²x + 1 JAWABAN E Soal 8 Jika fx = a tan x + bx dan f'$\frac{π}{4}$ = 3, f'$\frac{π}{3}$ = 9, maka a + b = ..... A. 0 B. 1 C. $\frac{π}{2}$ D. 2 E. π Pembahasan fx = a tan x + bx f'x = a . $\frac{1}{cos^{2}x}$ + b f'$\frac{π}{4}$ = a . $\frac{1}{cos^{2}\frac{π}{4}}$ + b 3 = a . $\frac{1}{√2/2^{2}}$ + b 3 = 2a + b ............1 f'$\frac{π}{3}$ = a . $\frac{1}{cos^{2}\frac{π}{3}}$ + b 9 = a . $\frac{1}{½^{2}}$ + b 9 = 4a + b..............2 Eliminasi persamaan 1 dan 2 diperoleh 2a + b = 34a + b = 9 - -2a = -6 a = -6/-2 a = 3 Subtitusi nilai a = 3 ke persamaan 1, diperoleh 23 + b = 3 6 + b = 3 b = 3 - 6 b = -3 Jadi, a + b = 3 + -3 = 0 JAWABAN A Soal 9 Jika r = $\sqrt{sin θ}$, maka dr/dθ = ..... A. $\frac{1}{2\sqrt{sin θ}}$ B. $\frac{cos θ}{2sin θ}$ C. $\frac{cos θ}{2\sqrt{sin θ}}$ D. $\frac{-sin θ}{2cos θ}$ E. $\frac{2cos θ}{\sqrt{sin θ}}$ Pembahasan Misalkan u = sin θ, maka u' = cos θ r = $\sqrt{sin θ}$ r = $\sqrt{u}$ r = $u^{½}$ r' = $\frac{1}{2√u}$ . u' r' = $\frac{1}{2\sqrt{sin θ}}$ . cos θ r' = $\frac{cos θ}{2\sqrt{sin θ}}$ JAWABAN CSoal 10 Jika fx = -cos² x - sin²x, maka f'x adalah..... A. 2sin x - cos x B. 2cos x - sin x C. sin x. cos x D. 2sin x cos x E. 4sin x cos x Pembahasan fx = -cos² x - sin²x fx = -1 - sin²x - sin²x fx = -1 - 2sin²x fx = 2sin²x - 1 Misalkan ux = sin x, maka u'x = cos x fx = 2[ux]² - 1 f'x = 4 . ux¹. u'x - 0 f'x = 4 sin x cos x JAWABAN E Demikian postingan "Soal dan Pembahasan Turunan Fungsi Trigonometri" kali ini mudah-mudahan dengan beberapa soal dan pembahasan di atas dapat memudahkan anda menyelesaikan soal-soal yang berkaitan dengan turunan fungsi trigonometri.
Menurutsaya pribadi ini merupakan salah satu contoh soal mengerikan, ada beberapa hal yang bisa menyebabkan Soal Turunan Fungsi Trigonometri itu mengerikan, untuk itu semangat belajarnya, karena semua akan kena libas pada waktunya. Soal dan Pembahasan Turunan Fungsi Trigonometri. Soal 1 Turunan pertama fungsi y = cos (2x³ - x²) ialah
belajar matematika dasar SMA dari Soal dan Pembahasan Matematika Dasar Turunan Fungsi Trigonometri. Turunan fungsi trigonometri ini adalah kelanjutan Calon guru belajar matematika dasar SMA dari Soal dan Pembahasan Matematika SMA Turunan Fungsi Trigonometri. Turunan fungsi trigonometri ini adalah kelanjutan atau pengembangan dari turunanan fungsi aljabar. Sama halnya dengan turunan fungsi aljabar bahwa untuk belajar matematika dasar turunan fungsi trigonometri, ada baiknya kita sudah sedikit paham tentang limit fungsi aljabar. Terkhusus lagi untuk belajar turunan fungsi trigonometri, kita juga sudah belajar limit fungsi trigonometri, karena ini adalah salah satu syarat perlu, agar lebih cepat dalam belajar turunan fungsi. Penerapan turunan fungsi trigonometri dalam kehidupan sehari-hari sangat banyak, diantaranya menemukan nilai maksimum atau minimum. Mempelajari dan menggunakan aturan-aturan pada turunan fungsi trigonometri bukanlah hal sulit, jika kita mau mengikuti step by step yang kita diskusikan pada alternatif pembahasan soal dibawah ini, maka kita akan bisa memahami soal-soal turunan fungsi trigonometri. Turunan diferensial dari sebuah fungsi $f$ adalah fungsi yang dituliskan $f'$ dibaca"f aksen". Jika sebuah fungsi dengan variabel $x$ dituliskan $fx$ maka turunan pertama fungsi tersebut adalah $f'x$, didefinisikan $f'x=\lim\limits_{h \to 0} \dfrac{fx+h-fx}{h}$ dengan catatan bahwa nilai limit ini ada. Jika $f'x$ bisa diperoleh $f$ dikatakan dapat diturunakan diferentiable. Selain bentuk $f'x$ dibaca"f aksen x", bentuk lain yang umum dipakai pada penulisan turunan fungsi $y=fx$ adalah $y'$ atau $D_{x}fx$ atau $\dfrac{dy}{dx}$ atau $\dfrac{d \leftfx\right}{dx}$. ATURAN TURUNAN FUNGSI Dari definisi turunan fungsi di atas, diperoleh beberapa aturan dasar turunan fungsi yang dapat digunakan pada turunan fungsi aljabar atau turunan fungsi trigonometri, antara lain Jika $fx=k$ kkonstanta maka $f'x=0$ Jika $fx=x$ maka $f'x=1$ Jika $fx= kx^{n}$ maka $f'x=knx^{n-1}$ Jika $fx= k \cdot ux$ maka $f'x=k \cdot u'x$ Jika $fx=ux+vx$ maka $f'x=u'x + v'x$ Jika $fx=ux - vx$ maka $f'x=u'x - v'x$ Jika $fx=ux \cdot vx$ maka $f'x=u'x \cdot vx+ux \cdot v'x$ Jika $fx=\dfrac{ux}{vx}$ maka $f'x=\dfrac{u'x \cdot vx-ux \cdot v'x}{v^{2}x}$ Jika $fx= u^{n}x$ maka $f'x=n \cdot u^{n-1}x \cdot u'x$ Jika $fx= \left ux \right $ maka $f'x=\dfrac{ux}{\left ux \right } \cdot u'x,\ \ u\neq 0 $ Jika $fx= ln\ ux$ maka $f'x=\dfrac{u'x}{ux}$ Jika $fx=e^{ux}$ maka $f'x=u'x \cdot e^{ux}$ Jika $fx=log_{a}ux$ maka $f'x= \dfrac{u'x}{ln\ a \cdot ux}$ Jika $fx=a^{ux}$ maka $f'x=a^{ux} \cdot u'x \cdot ln\ a$ ATURAN TURUNAN FUNGSI TRIGONOMETRIDari definisi turunan fungsi, selain beberapa aturan pada turunan fungsi di atas, khusus untuk turunan fungsi trigonometri diperoleh beberapa aturan dasar turunan fungsi, yaitu Jika $fx=sin\ ux$ maka $f'x=u'x \cdot cos\ ux$ Jika $fx=cos\ ux$ maka $f'x=-u'x \cdot sin\ ux$ Jika $fx= tan\ ux$ maka $f'x=u'x \cdot sec^{2}\ ux$ Jika $fx= cot\ ux$ maka $f'x=-u'x \cdot csc^2\ ux$ Jika $fx= sec\ ux$ maka $f'x=u'x \cdot sec\ ux\ tan\ ux$ Jika $fx=csc\ ux$ maka $f'x=-u'x \cdot csc\ ux\ cot\ ux$ Jika $fx=arcsin\ ux$ maka $f'x=\dfrac{u'x}{\sqrt{1-u^{2}x}}$ Jika $fx=arccos\ ux$ maka $f'x=\dfrac{-u'x}{\sqrt{1-u^{2}x}}$ Jika $fx=arctan\ ux$ maka $f'x=\dfrac{u'x}{1+u^{2}x}$ Jika $fx=arccot\ ux$ maka $f'x=\dfrac{-u'x}{1+u^{2}x}$ Jika $fx=arcsec\ ux$ maka $f'x=\dfrac{u'x}{ux \sqrt{u^{2}x-1}}$ Jika $fx=arccsc\ ux$ maka $f'x=\dfrac{-u'x}{ux \sqrt{u^{2}x-1}}$ Jika $fx=sinh\ ux$ maka $f'x= u'x \cdot cosh\ ux$ Jika $fx=cosh\ ux$ maka $f'x=-u'x \cdot sinh\ ux$ Jika $fx=tanh\ ux$ maka $f'x=u'x \cdot sech^{2}\ ux$ Jika $fx=coth\ ux$ maka $f'x=-u'x \cdot csch^2\ ux$ Jika $fx=sech\ ux$ maka $f'x=-u'x \cdot sech\ ux\ tanh\ ux$ Jika $fx=csch\ ux$ maka $f'x=-u'x \cdot csch\ ux\ coth\ ux$ Jika $fx=sinh^{-1}\ ux$ maka $f'x=\dfrac{u'x}{\sqrt{u^{2}x+1}}$ Jika $fx=cosh^{-1}\ ux$ maka $f'x=\dfrac{u'x}{\sqrt{u^{2}x-1}}$ Jika $fx=tanh^{-1}\ ux$ maka $f'x=\dfrac{u'x}{1-u^{2}x}$ Jika $fx=coth^{-1}\ ux$ maka $f'x=\dfrac{u'x}{1-u^{2}x}$ Jika $fx=sech^{-1}\ ux$ maka $f'x=\dfrac{-u'x}{ux\sqrt{1-u^{2}x}}$ Jika $fx=csch^{-1}\ ux$ maka $f'x=\dfrac{-u'x}{ux \sqrt{1+u^{2}x}}$ MENENTUKAN GRADIEN GARIS SINGGUNG KURVA Jika kurva $y=fx$ disinggung oleh garis $g$ dititik $x_{1},y_{1}$, gradien garis singgung $g$ adalah $m=f'x_{1}$ dan persamaan garis singgung $g$ adalah $y-y_{1}=mx-x_{1}$. FUNGSI NAIK DAN FUNGSI TURUN Jika $f'x \gt 0$ maka fungsi $y=fx$ naik atau sebaliknya jika $y=fx$ naik maka $f'x \gt 0$ Jika $f'x \lt 0$ maka fungsi $y=fx$ turun atau sebaliknya jika $y=fx$ turun maka $f'x \lt 0$ NILAI MAKSIMUM atau NILAI MINIMUMNilai maksimum atau minimum suatu fungsi $fx$ dapat ditentukan dengan uji turunan pertama atau uji turunan kedua. Jika $x=a$ pada $f'a=0$ sehingga $f''a \gt 0$ maka $x=a$ adalah pembuat $fx$ minimum atau nilai minimum $fx$ adalah $fa$. Jika $x=a$ pada $f'a=0$ sehingga $f''a \lt 0$ maka $x=a$ adalah pembuat $fx$ maskimum atau nilai maksimum $fx$ adalah $fa$. Soal dan Pembahasan Matematika SMA Turunan Fungsi Trigonometri Untuk memantapkan beberapa aturan dasar turunan fungsi trigonometri di atas, mari kita coba beberapa soal latihan yang kita pilih secara acak dari soal-soal Ujian Nasional atau seleksi masuk perguruan tinggi negeri atau sekolah kedinasan😊. 1. Soal UMPTN 1992 Rayon A *Soal LengkapDiketahui fungsi $fx=\dfrac{2+cos\ x}{sin\ x}$. Garis singgung grafiknya pada $x=\dfrac{\pi}{2}$ memotong sumbu $y$ di titik $x=\left 0,b \right$. Nilai $b$ adalah... $\begin{align} A\ & 2 \\ B\ & \dfrac{\pi}{2} \\ C\ & -2+\dfrac{\pi}{2} \\ D\ & 2-\dfrac{\pi}{2} \\ E\ & 2+\dfrac{\pi}{2} \end{align}$ Alternatif PembahasanUntuk kita ingat bahwa jika $y=sin\ x$ maka $y'=cos\ x$ dan $y=cos\ x$ maka $y'=-sin\ x$. Untuk $x=\dfrac{\pi}{2}=90^{\circ}$ pada $fx=\dfrac{2+cos\ x}{sin\ x}$ maka kita peroleh $\begin{align} y &=\dfrac{2+cos\ x}{sin\ x} \\ &=\dfrac{2+cos\ 90^{\circ}}{sin\ 90^{\circ}} \\ &=\dfrac{2+0}{1}=2 \\ \hline x,y &= \left 90^{\circ},2 \right \end{align}$ Gradien garis singgung di sebuah titik dapat kita tentukan dengan menggunakan turunan pertama yaitu $m=f'x$, sehingga saat $x=\dfrac{\pi}{2}=90^{\circ}$ kita peroleh $\begin{align} fx\ &= \dfrac{2+cos\ x}{sin\ x} \\ \hline fx\ &= \dfrac{u}{v}\ \rightarrow f'x = \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ \hline m=f'x &= \dfrac{\left -sin\ x \right\leftsin\ x \right-\left 2+cos\ x \right\leftcos\ x \right}{sin^{2} x} \\ &= \dfrac{ -sin^{2} x -\left 2cos\ x+cos^{2} x \right}{sin^{2} x} \\ &= \dfrac{ -sin^{2} x -2cos\ x-cos^{2} x }{sin^{2} x} \\ &= \dfrac{ - \left sin^{2}+cos^{2} x \right -2cos\ x }{sin^{2} x} \\ &= \dfrac{ - 1 -2cos\ x }{sin^{2} x} \\ &= \dfrac{ - 1 -2cos\ 90^{\circ} }{sin^{2} 90^{\circ}} \\ &= \dfrac{ - 1 -2 0 }{1^{2}} \\ &= -1 \\ \end{align}$ Persaman garis untuk $m=-1$ pada $x,y= \left 90^{\circ},2 \right$ adalah $\begin{align} y-y_{1} &= m \left x-x_{1} \right \\ y-2 &= -1 \left x- 90^{\circ} \right \\ y-2 &= -x+ 90^{\circ} \\ y &= -x+2+ 90^{\circ} \end{align}$ Garis memotong sumbu $y$ di titik $\left 0,b \right$ sehingga $\begin{align} y &= -x+2+ 90^{\circ} \\ b &= -0+2+ 90^{\circ} \\ b &=2+ 90^{\circ} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 2+\dfrac{\pi}{2}$2. Soal UMPTN 1993 Rayon B *Soal LengkapJika $fx= - \left cos^{2}x-sin^{2}x \right$, maka $f'x$ adalah... $\begin{align} A\ & 2 \left cos\ x + sin\ x \right \\ B\ & 2 \left cos\ x - sin\ x \right \\ C\ & sin\ x\ cos\ x \\ D\ & 2\ sin\ x\ cos\ x \\ E\ & 4\ sin\ x\ cos\ x \end{align}$ Alternatif PembahasanUntuk menyelesaikan soal ini kita meminjam sifat dari identitas trigonometri yaitu $sin\ 2x=2\ sin\ x\ cos\ x$ dan $cos\ 2x=cos^{2}x-sin^{2}x$, sehingga berlaku $\begin{align} fx &= - \left cos^{2}x-sin^{2}x \right \\ &= - \left -2\ sin\ 2x \right \\ &= 2\ sin\ 2x \\ &= 2\ \cdot 2 sin\ x\ cos\ x \\ &= 4 sin\ x\ cos\ x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 4\ sin\ x\ cos\ x$3. Soal UMPTN 1993 Rayon B *Soal LengkapJika $y=3x^{4}+sin\ 2x +cos\ 3x$, maka $\dfrac{dy}{dx}=\cdots$ $\begin{align} A\ & 12x^{3}+2\ cos\ 2x +3\ sin\ 3x \\ B\ & 12x^{3}+ cos\ 2x - sin\ 3x \\ C\ & 12x^{3}-2\ cos\ 2x +3\ sin\ 3x \\ D\ & 12x^{3}-2\ cos\ 2x -3\ sin\ 3x \\ E\ & 12x^{3}+2\ cos\ 2x -3\ sin\ 3x \end{align}$ Alternatif Pembahasan$\begin{align} y &=3x^{4}+sin\ 2x +3\ cos\ 3x \\ \dfrac{dy}{dx} &=34x^{3}+2\ cos\ 2x -3\ sin\ 3x \\ &=12x^{3}+2\ cos\ 2x -3\ sin\ 3x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 12x^{3}+2\ cos\ 2x -3\ sin\ 3x$4. Soal UMPTN 1993 Rayon C *Soal LengkapJika $y=2\ sin\ 3x -3\ cos\ 2x$, maka $\dfrac{dy}{dx}=\cdots$ $\begin{align} A\ & 2\ cos\ 3x -3\ sin\ 2x \\ B\ & 6\ cos\ 3x -3\ sin\ 2x \\ C\ & 2\ cos\ 3x +3\ sin\ 2x \\ D\ & 6\ cos\ 3x +6\ sin\ 2x \\ E\ & -6\ cos\ 3x - 6\ sin\ 2x \\ \end{align}$ Alternatif Pembahasan$\begin{align} y &=2\ sin\ 3x -3\ cos\ 2x \\ \dfrac{dy}{dx} &=23\ cos\ 3x -3 \left-2\ sin\ 2x \right \\ &=6\ cos\ 3x +6 \ sin\ 2x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 12x^{3}+2cos\ 2x -3 sin\ 3x$5. Soal UMPTN 1999 Rayon A *Soal LengkapJika $fx=\dfrac{sin\ x+cos\ x}{sin\ x}$, $sin\ x \neq 0$ dan $f'x$ adalah turunan $fx$, maka $f' \left \dfrac{\pi}{2} \right $ $\begin{align} A\ & -2 \\ B\ & -1 \\ C\ & 0 \\ D\ & 1 \\ E\ & 2 \end{align}$ Alternatif Pembahasan$\begin{align} fx\ &= \dfrac{sin\ x+cos\ x}{sin\ x} \\ \hline fx\ &= \dfrac{u}{v}\ \rightarrow f'x = \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ \hline f'x &= \dfrac{\left cos\ x - sin\ x \right\left sin\ x \right-\left sin\ x + cos\ x \right\left cos\ x \right}{sin^{2} x} \\ &= \dfrac{cos\ x\ sin\ x - sin^{2} x- sin\ x\ cos\ x-cos^{2}x}{sin^{2} x} \\ &= \dfrac{ - sin^{2} x-cos^{2}x}{sin^{2} x} \\ &= \dfrac{ - \left sin^{2} x+cos^{2}x \right}{sin^{2} x} \\ &= \dfrac{ - 1}{sin^{2} x} \\ \hline f' \left \dfrac{\pi}{2} \right &= \dfrac{ - 1}{sin^{2} \left \dfrac{\pi}{2} \right} \\ &= \dfrac{ - 1}{1} = -1 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ -1$6. Soal UMPTN 1998 Rayon A *Soal LengkapJika $fx=a\ tan\ x +bx$, $f'\left \dfrac{\pi}{4} \right=3$ dan $f'\left \dfrac{\pi}{3} \right=9$, maka $a+b=\cdots$ ... $\begin{align} A\ & 0 \\ B\ & 1 \\ C\ & \dfrac{\pi}{2} \\ D\ & 2 \\ E\ & \pi \end{align}$ Alternatif PembahasanCatatan calon guru yang mungkin kita perlukan tentang Turunan Fungsi yaitu jika $fx=tan\ x$ maka $f'x=sec^{2} x$. Apabila bentuk ini tidak ingat waktu ujian maka, hal yang paling mungkin kita lakukan adalah menurunkan $fx=tan\ x=\dfrac{sin\ x}{cos\ x}$ pakai aturan $y=\dfrac{u}{v}$ maka $y'=\dfrac{u' \cdot v+u \cdot v'}{v^{2}}$. $\begin{align} fx & = a\ tan\ x +bx \\ f'x & = a\ sec^{2} x +b \\ f'x & = \dfrac{a}{cos^{2} x} +b \\ \hline f'\left \dfrac{\pi}{4} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{4} \right} +b \\ 3 & = \dfrac{a}{cos^{2} \left 45^{\circ} \right} +b \\ 3 & = \dfrac{a}{\left \frac{1}{2}\sqrt{2} \right^{2}} +b \\ 3 & = \dfrac{a}{ \frac{1}{2}} +b \\ 3 & = 2a +b \\ \hline f'\left \dfrac{\pi}{3} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{3} \right} +b \\ 9 & = \dfrac{a}{cos^{2} \left 60^{\circ} \right} +b \\ 9 & = \dfrac{a}{\left \frac{1}{2} \right^{2}} +b \\ 9 & = \dfrac{a}{\frac{1}{4}} +b \\ 9 & = 4a +b \\ \end{align}$ Dengan mengeliminasi atau substitusi, kita peroleh $\begin{array}{cccc} 2a+b = 3 & \\ 4a+b = 9 & - \\ \hline 2a = 6 & \\ a = 3 & \\ b = -3 & \\ \hline a+b=0 \end{array} $ $\therefore$ Pilihan yang sesuai $A\ 0$7. Soal SPMB 2002 Regional I *Soal LengkapTurunan pertama dari $y=cos^{4}\ x$ adalah... $\begin{align} A\ & \dfrac{1}{4}\ cos^{3}x \\ B\ & -\dfrac{1}{4}\ cos^{3}x \\ C\ & \dfrac{1}{4}\ sin^{3}x \\ D\ & -4\ sin^{3}x cos\ x \\ E\ & -4\ cos^{3}x\ sin\ x \end{align}$ Alternatif PembahasanUntk menyelesaikan masalah di atas kita coba dengan pemisalan $\begin{align} u & = cos\ x \\ \dfrac{du}{dx} & = -sin\ x \\ \hline y & = cos^{4}\ x\\ y & = u^{4} \\ \dfrac{dy}{du} & = 4u^{3} \\ \hline \dfrac{dy}{dx} & = \dfrac{dy}{du} \cdot \dfrac{du}{dx} \\ & = 4u^{3} \cdot \left -sin\ x \right \\ & = 4cos^{3}\ x \cdot \left -sin\ x \right \\ & = -4cos^{3}\ x \cdot sin\ x \end{align}$ $\therefore$ Pilihan yang sesuai $E\ -4\ cos^{3}\ x \cdot sin\ x$8. Soal UM STIS 2011 *Soal LengkapJika $fx=a\ tan\ x +bx$, $f'\left \dfrac{\pi}{4} \right=3$ dan $f'\left \dfrac{\pi}{3} \right=9$, maka $a+b=\cdots$ ... $\begin{align} A\ & 0 \\ B\ & 2 \\ C\ & \dfrac{24}{5} \\ D\ & 6 \\ E\ & \dfrac{39}{5} \end{align}$ Alternatif PembahasanCatatan calon guru yang mungkin kita perlukan tentang Turunan Fungsi yaitu jika $fx=tan\ x$ maka $f'x=sec^{2} x$. Apabila bentuk ini tidak ingat waktu ujian maka, hal yang paling mungkin kita lakukan adalah menurunkan $fx=tan\ x=\dfrac{sin\ x}{cos\ x}$ pakai aturan $y=\dfrac{u}{v}$ maka $y'=\dfrac{u' \cdot v+u \cdot v'}{v^{2}}$. $\begin{align} fx & = a\ tan\ x +bx \\ f'x & = a\ sec^{2} x +b \\ f'x & = \dfrac{a}{cos^{2} x} +b \\ \hline f'\left \dfrac{\pi}{4} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{4} \right} +b \\ 3 & = \dfrac{a}{cos^{2} \left 45^{\circ} \right} +b \\ 3 & = \dfrac{a}{\left \frac{1}{2}\sqrt{2} \right^{2}} +b \\ 3 & = \dfrac{a}{ \frac{1}{2}} +b \\ 3 & = 2a +b \\ \hline f'\left \dfrac{\pi}{3} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{3} \right} +b \\ 9 & = \dfrac{a}{cos^{2} \left 60^{\circ} \right} +b \\ 9 & = \dfrac{a}{\left \frac{1}{2} \right^{2}} +b \\ 9 & = \dfrac{a}{\frac{1}{4}} +b \\ 9 & = 4a +b \\ \end{align}$ Dengan mengeliminasi atau substitusi, kita peroleh $\begin{array}{cccc} 2a+b = 3 & \\ 4a+b = 9 & - \\ \hline 2a = 6 & \\ a = 3 & \\ b = -3 & \\ \hline a+b=0 \end{array} $ $\therefore$ Pilihan yang sesuai $A\ 0$9. Soal SBMPTN 2017 Kode 106/124 *Soal LengkapJika $fx=sinsin^{2}x$, maka $f'x=\ldots$ $\begin{align} A\ & 2\ sin\ x \cdot cossin^{2}x \\ B\ & 2\ sin\ 2x \cdot cossin^{2}x \\ C\ & sin^{2}x \cdot cossin^{2}x \\ D\ & sin^{2}2x \cdot cossin^{2}x \\ E\ & sin\ 2x \cdot cossin^{2}x \end{align}$ Alternatif PembahasanUntuk mendapatkan turunan pertama dari fungsi di atas kita coba gunakan aturan rantai, yaitu $f'x = \dfrac{df}{dx} = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}$ Soal$fx=sinsin^{2}x$ Misal $u=sin\ x$ $\Rightarrow \dfrac{du}{dx}=cos\ x$ Soal$fx=sinu^{2}$ Misal $v=u^{2}$ $\Rightarrow \dfrac{dv}{du}=2u$ Soal$fx=sinv$ $\Rightarrow \dfrac{df}{dv}=cosv$ $\begin{split} f'x = \dfrac{df}{dx} & = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}\\ & =cosv \cdot 2u \cdot cos\ x\\ & =cosu^{2} \cdot 2sin\ x \cdot cos\ x\\ & =cossin^{2}x \cdot 2sin\ x \cdot cos\ x\\ & =cossin^{2}x \cdot sin\ 2x\\ & = sin\ 2x \cdot cossin^{2}x \end{split}$ $\therefore$ Pilihan yang sesuai adalah $E\ sin\ 2x \cdot cossin^{2}x$ 10. Soal SBMPTN 2017 Kode 135 *Soal Lengkap Misalkan $fx=2\ tan \left\sqrt{sec\ x} \right$, maka $f'x\cdots$ $\begin{align} A\ & sec^{2} \left\sqrt{sec\ x} \right \cdot tan\ x \\ B\ & sec^{2}\left\sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot tan\ x \\ C\ & 2sec^{2}\left\sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot tan\ x \\ D\ & sec^{2}\left\sqrt{sec\ x} \right \cdot sec\ x \cdot tan\ x \\ E\ & 2sec^{2}\left\sqrt{sec\ x} \right \cdot sec\ x \cdot tan\ x \end{align}$ Alternatif Pembahasan Untuk mendapatkan turunan pertama dari fungsi di atas kita coba gunakan aturan rantai, yaitu $f'x = \dfrac{df}{dx} = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}$ Soal$fx=2\ tan \left\sqrt{sec\ x} \right$ Misal $u=sec\ x$ $\Rightarrow \dfrac{du}{dx}=sec\ x\ \cdot \tan\ x$ Soal$fx=2\ tan \left\sqrt{u} \right$ Misal $v=\sqrt{u}$ $\Rightarrow \dfrac{dv}{du}=\dfrac{1}{2\sqrt{u}}$ Soal$fx=2\ tan \left v \right$ $\Rightarrow \dfrac{df}{dv}=2sec^{2}v$ $\begin{split} f'x = \dfrac{df}{dx} &= \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}\\ & =2sec^{2}v \cdot \dfrac{1}{2\sqrt{u}} \cdot sec\ x\ \cdot \tan\ x \\ & =2sec^{2}\left \sqrt{u} \right \cdot \dfrac{1}{2\sqrt{sec\ x}} \cdot sec\ x\ \cdot \tan\ x \\ & =sec^{2}\left \sqrt{sec\ x} \right \cdot \dfrac{1}{\sqrt{sec\ x}} \cdot sec\ x\ \cdot \tan\ x \\ & = sec^{2}\left \sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot \tan\ x \end{split}$ $\therefore$ Pilihan yang sesuai adalah $B\ sec^{2}\left\sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot tan\ x$ 11. Soal SPMB 2005 Regional II *Soal Lengkap Turunan pertama dari fungsi $fx=\dfrac{1+cos\ x}{sin\ x}$ adalah $f'x=\cdots$ $\begin{align} A\ & \dfrac{1-sin\ x}{sin^{2}x} \\ B\ & \dfrac{ sin\ x-1}{cos\ x-1} \\ C\ & \dfrac{ 2}{cos\ x+1} \\ D\ & \dfrac{ 2}{sin\ x-1} \\ E\ & \dfrac{1}{cos\ x-1} \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= \dfrac{1+cos\ x}{sin\ x} \\ \hline & u\ = 1+cos\ x \rightarrow u'=-sin\ x \\ & v\ = sin\ x \rightarrow v'=cos\ x \\ \hline fx\ &= \dfrac{u}{v} \\ f'x &= \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ f'x &= \dfrac{\left -sin\ x \right\left sin\ x \right-\left 1 + cos\ x \right\left cos\ x \right}{sin^{2} x} \\ &= \dfrac{ -sin^{2}\ x - cos\ x - cos^{2} x }{sin^{2} x} \\ &= \dfrac{ -\left sin^{2}\ x+cos^{2} x \right - cos\ x}{sin^{2} x} \\ &= \dfrac{ -1 - cos\ x}{sin^{2} x} \\ &= \dfrac{ - \left1 + cos\ x \right}{1-cos^{2} x} \\ &= \dfrac{ - \left1 + cos\ x \right}{\left1 + cos\ x \right\left1 - cos\ x \right} \\ &= \dfrac{ -1 }{ \left1 - cos\ x \right} \\ &= \dfrac{1}{cos\ x-1} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ \dfrac{1}{cos\ x-1} $ 12. Soal SPMB 2005 Kode 772 Regional I *Soal Lengkap Jika fungsi $fx=sin\ ax + cos\ bx$ memenuhi $f'0=b$ dan $f'\left \frac{\pi}{2a} \right=-1$, maka $a+b=\cdots$ $\begin{align} A\ & -1 \\ B\ & 0 \\ C\ & 1 \\ D\ & 2 \\ E\ & 3 \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= sin\ ax + cos\ bx \\ f'x\ &= a\ cos\ ax -b\ sin\ bx \\ \hline f'0\ &= a\ cos\ 0 -b\ sin\ 0 \\ b\ &= a\ \cdot 1 -b\ \cdot 0 \\ b\ &= a \\ \hline f'\left \frac{\pi}{2a} \right\ &= a\ cos\ a\left \frac{\pi}{2a} \right -b\ sin\ b\left \frac{\pi}{2a} \right \\ -1\ &= a\ cos\ a\left \frac{\pi}{2a} \right -a\ sin\ a\left \frac{\pi}{2a} \right \\ -1\ &= a\ cos\ \left \frac{\pi}{2 } \right -a\ sin\ \left \frac{\pi}{2 } \right \\ -1\ &= a\ \cdot 0 -a\ \cdot 1 \\ -1\ &= -a \\ a\ &= 1\ \rightarrow b=1 \\ a+b\ &= 2 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $D\ 2$ 13. Soal SPMB 2005 Kode 520 Regional II *Soal Lengkap Jika $fx=sin\ x\ cos\ 3x$, maka $f'\left \frac{1}{6}\pi \right=\cdots$ $\begin{align} A\ & \dfrac{1}{2} \\ B\ & -\dfrac{1}{2} \\ C\ & -1\dfrac{1}{2} \\ D\ & -\dfrac{1}{2}+\sqrt{3} \\ E\ & -1\dfrac{1}{2}+\sqrt{3} \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= sin\ x\ cos\ 3x\\ \hline & u\ = sin\ x \rightarrow u'=cos\ x \\ & v\ = cos\ 3x \rightarrow v'=-3\ sin\ 3x \\ \hline \hline fx\ &= u \cdot v \\ f'x &= u' \cdot v + u \cdot v' \\ f'x &= cos\ x \cdot cos\ 3x + sin\ x \cdot -3\ sin\ 3x \\ &= cos\ x \cdot cos\ 3x -3 sin\ x \cdot sin\ 3x \\ \hline f'\left \frac{1}{6}\pi \right &= cos\ \left \frac{1}{6}\pi \right \cdot cos\ 3\left \frac{1}{6}\pi \right -3 sin\ \left \frac{1}{6}\pi \right \cdot sin\ 3\left \frac{1}{6}\pi \right \\ &= cos\ 30^{\circ} \cdot cos\ 90^{\circ} -3 sin\ 30^{\circ} \cdot sin\ 90^{\circ} \\ &= \dfrac{1}{2} \sqrt{3} \cdot 0 -3 \cdot \dfrac{1}{2} \cdot 1 \\ &= 0 - \dfrac{3}{2} \\ &=- \dfrac{3}{2} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ -1\dfrac{1}{2}$ 14. Soal SPMB 2005 Kode 171 Regional III *Soal Lengkap Turunan pertama dari fungsi $y= \left sin\ x\ + cos\ x \right^{2}$ adalah $y'=\cdots$ $\begin{align} A\ & 0 \\ B\ & 4\ sin^{2}x \\ C\ & 4\ sin^{2}x-2 \\ D\ & 4\ cos^{2}x-2 \\ E\ & 4\ cos^{2}x-4 \\ \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= \left sin\ x\ + cos\ x \right^{2} \\ &= sin^{2} x\ + cos^{2} x + 2\ sin\ x\ cos\ x \\ &= 1 + 2\ sin\ x\ cos\ x \\ &= 1 + sin\ 2x \\ f'x &= 2\ cos\ 2x \\ &= 2\ \left 2cos^{2}x-1 \right \\ &= 4\ cos^{2}x-2 \end{align}$ Alternatif yang lain dapat juga kita gunakan sifat turunan yaitu $\begin{align} fx\ &= \left sin\ x\ + cos\ x \right^{2} \\ f'x &= 2 \left sin\ x\ + cos\ x \right \left cos\ x\ - sin\ x \right \\ &= 2 \left cos^{2}\ x\ - sin^{2}\ x \right \\ &= 2 \left cos^{2}\ x\ - 1 +cos^{2}\ x \right \\ &= 2 \left 2cos^{2}\ x\ - 1 \right \\ &= 4\ cos^{2}x- 2 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $D\ 4\ cos^{2}x-2$ 15. Soal UM UGM 2005 Kode 821 *Soal Lengkap Jika $f\left x \right= \sqrt{1+sin^{2}x},\ 0 \leq x \leq \pi$, maka $f'\left x \right \cdot f\left x \right$ sama dengan... $\begin{align} A\ & \left 1+sin^{2}x \right sin\ x\ cos\ x \\ B\ & \left 1+sin^{2}x \right \\ C\ & sin\ x\ cos\ x \\ D\ & sin\ x \\ E\ & \dfrac{1}{2} \\ \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right\ &= \sqrt{1+sin^{2}x} \\ f\left x \right\ &= \left 1+sin^{2}x \right^{\frac{1}{2}} \\ f'\left x \right\ &= \frac{1}{2} \cdot \left 1+sin^{2}x \right^{-\frac{1}{2}} \cdot 2 \cdot sin\ x \cdot cos\ x \\ &= \dfrac{1}{\sqrt{1+sin^{2}x}} \cdot sin\ x \cdot cos\ x \\ &= \dfrac{sin\ x \cdot cos\ x}{\sqrt{1+sin^{2}x}} \\ \hline f'\left x \right \cdot f\left x \right &= \sqrt{1+sin^{2}x} \cdot \dfrac{sin\ x \cdot cos\ x}{\sqrt{1+sin^{2}x}} \\ &= sin\ x \cdot cos\ x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ sin\ x\ cos\ x$ 16. Soal UM UGM 2005 Kode 621 *Soal Lengkap Diketahui $f\left x \right= x\ sin\ 3x$, maka $f'\left \frac{\pi}{4} \right$ sama dengan... $\begin{align} A\ & \dfrac{\sqrt{2}}{2} \left1+ \dfrac{3\pi}{4} \right\\ B\ & \dfrac{\sqrt{2}}{4} \left1+ \dfrac{3\pi}{4} \right\\ C\ & \dfrac{\sqrt{2}}{2} \left1- \dfrac{3\pi}{4} \right\\ D\ & \dfrac{\sqrt{2}}{2} \left \dfrac{3\pi}{4}-1 \right\\ E\ & \dfrac{-\sqrt{2}}{2} \left1+ \dfrac{3\pi}{4} \right \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right\ &= x\ sin\ 3x \\ \hline & u\ = x \rightarrow u'=1 \\ & v\ = sin\ 3x \rightarrow v'= 3\ cos\ 3x \\ \hline fx\ &= u \cdot v \\ f'x &= u' \cdot v + u \cdot v' \\ f'x &= 1 \cdot sin\ 3x + x \cdot 3\ cos\ 3x \\ &= sin\ 3x + 3x \cdot cos\ 3x \\ f'\left \frac{\pi}{4} \right &= sin\ 3\left \frac{\pi}{4} \right + 3\left \frac{\pi}{4} \right \cdot cos\ 3\left \frac{\pi}{4} \right \\ &= sin\ 135^{\circ} + 3\left \frac{\pi}{4} \right \cdot cos\ 135^{\circ} \\ &= \dfrac{\sqrt{2}}{2} + 3\left \frac{\pi}{4} \right \cdot \left -\dfrac{\sqrt{2}}{2} \right \\ &= \dfrac{\sqrt{2}}{2} - 3\left \frac{\pi}{4} \right \cdot \left \dfrac{\sqrt{2}}{2} \right \\ &= \left \dfrac{\sqrt{2}}{2} \right \left1 - 3 \cdot \frac{\pi}{4} \right \\ \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ \dfrac{\sqrt{2}}{2} \left1- \dfrac{3\pi}{4} \right$ 17. Soal UM UGM 2006 Kode 381 *Soal Lengkap Jika $f\left x \right= \dfrac{cos\ x -sin\ x}{cos\ x + sin\ x}$, dengan $cos\ x +sin x \neq 0$ maka $f'\left x \right=\cdots$ $\begin{align} A\ & 1- \left fx \right^{2}\\ B\ & -1+\left fx \right^{2}\\ C\ & - \left1+ \left fx \right^{2} \right \\ D\ & 1 + \left fx \right^{2}\\ E\ & \left fx \right^{2} \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right\ &= \dfrac{cos\ x -sin\ x}{cos\ x + sin\ x} \\ \hline & u\ = cos\ x -sin\ x \rightarrow u'=-sin\ x - cos\ x \\ & v\ = cos\ x + sin\ x \rightarrow v'= -sin\ x + cos\ x \\ \hline fx\ &= \dfrac{u}{v} \\ f'x &= \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ f'x &= \dfrac{\left -sin\ x - cos\ x \right\left cos\ x + sin\ x \right-\left cos\ x -sin\ x \right\left -sin\ x + cos\ x \right}{\left cos\ x + sin\ x \right^{2} } \\ &= \dfrac{-\left sin\ x + cos\ x \right^{2} -\left cos\ x -sin\ x \right^{2}}{\left cos\ x + sin\ x \right^{2} } \\ &= \dfrac{-\left sin\ x + cos\ x \right^{2}}{\left cos\ x + sin\ x \right^{2}} - \dfrac{\left cos\ x -sin\ x \right^{2}}{\left cos\ x + sin\ x \right^{2} }\\ &= -1 - \dfrac{\left cos\ x -sin\ x \right^{2}}{\left cos\ x + sin\ x \right^{2} }\\ &= -1 - \left fx \right^{2} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ - \left1+ \left fx \right^{2} \right$ 18. Soal UMPTN 1994 Rayon B *Soal Lengkap Jika $fx=x\ cos\ x$, maka $f'\leftx + \frac{\pi}{2} \right=\cdots$ $\begin{align} A\ & -sin\ x\ -x\ cos\ x + \frac{\pi}{2}\ cos\ x \\ B\ & -sin\ x\ -x\ cos\ x - \frac{\pi}{2}\ cos\ x \\ C\ & -sin\ x\ + x\ cos\ x - \frac{\pi}{2}\ cos\ x \\ D\ & -sin\ x\ + x\ cos\ x + \frac{\pi}{2}\ cos\ x \\ E\ & -cos\ x\ + x\ sin\ x + \frac{\pi}{2}\ cos\ x \end{align}$ Alternatif Pembahasan Untuk kita ingat bahwa $y=sin\ \left\frac{\pi}{2}+x \right=cos\ x$ dan $y=cos\ \left\frac{\pi}{2}+x \right=-sin\ x$. $\begin{align} fx &= x\ cos\ x \\ f\leftx + \frac{\pi}{2} \right &= \leftx + \frac{\pi}{2} \right\ cos\ \leftx + \frac{\pi}{2} \right \\ &= -\leftx + \frac{\pi}{2} \right\ sin\ x \\ \hline & u\ = -\leftx + \frac{\pi}{2} \right \rightarrow u'=-1 \\ & v\ = sin\ x \rightarrow v'= cos\ x \\ \hline fx\ &= u \cdot v \\ f'\leftx \right &= u' \cdot v + u \cdot v' \\ \hline f' \leftx + \frac{\pi}{2} \right &= -1 \cdot sin\ x -\leftx + \frac{\pi}{2} \right \cdot cos\ x \\ &= -sin\ x -\leftx + \frac{\pi}{2} \right \cdot cos\ x \\ &= -sin\ x - x\ cos\ x - \frac{\pi}{2}\ cos\ x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ -sin\ x\ -x\ cos\ x - \frac{pi}{2}\ cos\ x$ 19. Soal UMPTN 2001 Rayon C *Soal Lengkap Garis $g$ menyinggung kurva $y=sin\ x + cos\ x$ di titik yang berabsis $\dfrac{1}{3}\pi$. Gradien garis yang tegak lurus pada garis $g$ adalah... $\begin{align} A\ & 1-\sqrt{3} \\ B\ & 1+\sqrt{3} \\ C\ & 1 \\ D\ & \dfrac{\sqrt{3}-1}{2} \\ E\ & \dfrac{1-\sqrt{3}}{2} \end{align}$ Alternatif Pembahasan Untuk kita ingat bahwa jika garis $g$ dan garis $l$ adalah dua buah garis saling tegak lurus maka perkalian gradiennnya adalah $-1$ atau dapat kita tuliskan $m_{g} \cdot m_{l}=-1$. $\begin{align} y &= sin\ x + cos\ x \\ y' &= cos\ x - sin\ x \\ \hline m_{x=\frac{1}{3}\pi} &= cos\ \frac{1}{3}\pi - sin\ \frac{1}{3}\pi \\ &= \dfrac{1}{2} - \dfrac{1}{2}\sqrt{3} \end{align}$ Gradien garis yang tegak lurus dengan garis singgung $g$ bergradien $m_{g}=\dfrac{1}{2} - \dfrac{1}{2}\sqrt{3}$ adalah $\begin{align} m_{g} \cdot m_{l} &= -1 \\ m_{l} &= \dfrac{-1}{\dfrac{1}{2} - \dfrac{1}{2}\sqrt{3}} \\ &= \dfrac{-2}{1 - \sqrt{3}} \\ &= \dfrac{-2}{1 - \sqrt{3}} \times \dfrac{1 + \sqrt{3}}{1 + \sqrt{3}} \\ &= \dfrac{-2 \left 1 + \sqrt{3} \right}{1-3} \\ &= 1 + \sqrt{3} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ 1+\sqrt{3}$ 20. Soal SNMPTN 2011 Kode 578 *Soal Lengkap Diketahui $f\left x \right=x^{\frac{1}{3}}\ sin\ x$. Persamaan garis singgung di $f$ yang melalui titik asal adalah... $\begin{align} A\ & x=0 \\ B\ & y=0 \\ C\ & y=x \\ D\ & y=-x \\ E\ & \text{tidak ada} \end{align}$ Alternatif Pembahasan Gradien garis Untuk kita ingat bahwa jika garis $g$ dan garis $l$ adalah dua buah garis saling tegak lurus maka perkalian gradiennnya adalah $-1$ atau dapat kita tuliskan $m_{g} \cdot m_{l}=-1$. $\begin{align} f\left x \right &= x^{\frac{1}{3}}\ sin\ x \\ f'\left x \right &=\frac{1}{3} \cdot x^{-\frac{2}{3}}\ sin\ x + x^{ \frac{1}{3}}\ cos\ x \\ &=\frac{1}{3} \cdot x^{-\frac{2}{3}}\ sin\ x + x^{ \frac{1}{3}}\ cos\ x \\ \end{align}$ Gradien garis singgung pada kurva yang melalui titik asal adalah $\begin{align} m_{g} &= \frac{1}{3} \cdot x^{-\frac{2}{3}}\ sin\ x + x^{ \frac{1}{3}}\ cos\ x \\ &= \frac{1}{3} \cdot \left 0 \right^{-\frac{2}{3}}\ sin\ \left 0 \right + \left 0 \right^{ \frac{1}{3}}\ cos\ \left 0 \right \\ &= \frac{1}{3} \cdot 0 + 0 \cdot 1 \\ &= 0 \end{align}$ Garis singgung melaluit titik asal $\left 0,0 \right$ dengan gradien $m=0$ adalah $\begin{align} y-y_{1} &= m \leftx-x_{1} \right \\ y-0 &= 0 \leftx- 0 \right \\ y &= 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ y=0$ 21. Soal SNMPTN 2010 KOde 528 *Soal Lengkap Jika garis singgung kurva $y=2x\ cos^{3} x$ di titik $\left \pi, -2\pi \right$ tegak lurus dengan garis $g$, maka persamaan garis $g$ adalah... $\begin{align} A\ & y=2x-3\pi \\ B\ & y=2x+\pi \\ C\ & y=\dfrac{1}{2}x-\dfrac{5}{2}\pi \\ D\ & y=-\dfrac{1}{2}x+3\pi \\ E\ & y=\dfrac{1}{2}x+\pi \\ \end{align}$ Alternatif Pembahasan Untuk kita ingat bahwa jika garis $g$ dan garis $l$ adalah dua buah garis saling tegak lurus maka perkalian gradiennnya adalah $-1$ atau dapat kita tuliskan $m_{g} \cdot m_{l}=-1$. $\begin{align} y &= 2x\ cos^{3} x \\ y' &= 2 \cdot cos^{3}\ x +2x \cdot 3 \cdot cos^{2}\ x \left -sin\ x \right \\ &= 2 \cdot cos^{3}\ x - 2x \cdot 3 \cdot cos^{2}\ x\ sin\ x \\ \hline m_{x=\pi} &= 2 \cdot cos^{3}\ \pi - 2\pi \cdot 3 \cdot cos^{2}\ \pi\ sin\ \pi \\ &= 2 \cdot -1^{3} - 2\pi \cdot 3 \cdot -1^{2}\ 0 \\ &= 2 \cdot -1 - 0 = -2 \end{align}$ Karena dua garis yang tegak lurus perkalian gradiennya adalah $-1$ sehingga gradien garis yang tegak lurus dengan garis bergradien $m_{g}=-2$ adalah $ m_{l}=\dfrac{1}{2} $ Persamaan garis di titik $\left \pi, -2\pi \right$ yang tegak lurus dengan garis $g$ adalah $\begin{align} y-y_{1} &= m \leftx-x_{1} \right \\ y+2\pi &= \dfrac{1}{2} \leftx- \pi \right \\ y &= \dfrac{1}{2}x- \dfrac{1}{2}\pi -2\pi \\ y &= \dfrac{1}{2}x- \dfrac{5}{2}\pi \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ \dfrac{1}{2}x- \dfrac{5}{2}\pi $ 22. Soal SIMAK UI 2012 Kode 523 *Soal Lengkap Diberikan $fx=sin^{2}x$. Jika $f'x$ menyatakan turunan pertama dari $fx$, maka $\lim\limits_{h \to \infty} h \left\{ f' \left x+\frac{1}{h} \right -f'x\right \}=\cdots$ $\begin{align} A\ & sin\ 2x \\ B\ & -cos\ 2x \\ C\ & 2\ cos\ 2x \\ D\ & 2\ sin\ x \\ E\ & -2\ cos\ x \end{align}$ Alternatif Pembahasan Bentuk limit $\lim\limits_{h \to \infty} h \left\{ f' \left x+\frac{1}{h} \right -f'x\right \}$ pada soal memiliki kemiripan dengan definisi turunan fungsi yaitu $\begin{align} y &= fx \\ f'x &= \lim\limits_{p \to 0} \dfrac{fx+p-fx}{p} \\ f''x &= \lim\limits_{p \to 0} \dfrac{f'x+p-f'x}{p} \\ f^{3}x &= \lim\limits_{p \to 0} \dfrac{f''x+p-f''x}{p} \\ \vdots & \end{align}$ Jika kita misalkan $h=\dfrac{1}{a}$ maka kita peroleh $a=\dfrac{1}{h}$ Lalu untuk $h \rightarrow \infty$ kita peroleh $a \rightarrow 0$ Dari apa yang kita peroleh di atas kita substitusikan pada soal, sehingga dapat kita tuliskan $\begin{align} & \lim\limits_{h \to \infty} h \left\{ f' \left x+\frac{1}{h} \right -f'x\right \} \\ &= \lim\limits_{a \rightarrow 0} \dfrac{1}{a} \left\{ f' \left x+ a \right -f'x\right \} \\ &= \lim\limits_{a \rightarrow 0} \dfrac{ f' \left x+ a \right -f'x}{a} \end{align}$ Dari bentuk di atas dapat kta simpulkan bahwa yang ditanyakan pada soal adalah turunan kedua dari fungsi $fx=sin^{2}x$, yaitu $\begin{align} fx &= sin^{2}x \\ f'x &= 2\ \cdot sin\ x\ cos\ x \\ f''x &= 2\ \cdot cos\ x\ \cdot cos\ x + 2 \cdot sin\ x \cdot \left-sin\ x \right \\ &= 2\ \cdot cos^{2}x - 2 \cdot sin^{2}x \\ &= 2\ \left cos^{2}x - sin^{2}x \right \\ &= 2\ cos\ 2x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ 2\ cos\ 2x$ 23. Soal UM UGM 2014 Kode 532 *Soal Lengkap Jika $f\left x \right= \left sin\ x + cos\ x \right\left cos\ 2x + sin\ 2x \right$ dan $f'\left x \right=2\ cos\ 3x +gx$ maka $gx=\cdots$ $\begin{align} A\ & cos\ 3x +sin\ x \\ B\ & cos\ 3x -sin\ x \\ C\ & cos\ x +sin\ x \\ D\ & cos\ x - sin\ x \\ E\ & -cos\ x + sin\ x \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas, kita mungkin memerlukan catatan Rumus Jumlah dan Selisih Dua Sudut pada perbandingan trigonometri. $\begin{align} f\left x \right &= \left sin\ x + cos\ x \right\left cos\ 2x + sin\ 2x \right\\ &= sin\ x\ cos\ 2x + sin\ x\ sin\ 2x + cos\ x\ cos\ 2x + cos\ x\ sin\ 2x\\ &= sin\ x\ cos\ 2x + cos\ x\ sin\ 2x + sin\ x\ sin\ 2x + cos\ x\ cos\ 2x \\ &= sin \left 2x+x \right + cos \left2x-x \right \\ &= sin \left 3x \right + cos \left x \right \\ f'\left x \right\ &= 3\ cos \left 3x \right - sin \left x \right \\ &= 2\ cos \left 3x \right + cos \left 3x \right - sin \left x \right \\ \hline f'\left x \right\ &= 2\ cos \left 3x \right + g \left x \right \\ \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ cos\ 3x -sin\ x$ 24. Soal SBMPTN 2014 Kode 589/586 *Soal Lengkap Jika $f\left x \right= 2x + sin\ 2x$ untuk $-\dfrac{\pi}{4} \lt x \lt \dfrac{\pi}{4} $, maka $f'x=\cdots$ $\begin{align} A\ & 4\ \sum\limits_{i=0}^{\infty} \left tan\ x \right ^{i} \\ B\ & 4\ \left 1-cos^{2}x \right \\ C\ & 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i} \\ D\ & 4\ \sum\limits_{i=0}^{\infty} \left -sin\ x \right ^{2i} \\ E\ & 4\ cos\ 2x \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right &= 2x + sin\ 2x \\ f '\left x \right &= 2 + 2\ cos\ 2x \\ &= 2 \left1 + cos\ 2x \right \\ &= 2 \left1 + 2cos^{2}x-1 \right \\ &= 4cos^{2}x \end{align}$ Sampai pada langkah di atas kita belum mendapatkan jawaban seperti apa yang diinginkan pembuat soal. Kita coba mengeksplorasi beberapa pilihan yang ada. Untuk pilihan $B$ dan $E$ sudah tidak mungkin lagi menjadi jawaban, sehingga yang perlu kita eksplorasi adalah pilihan $A$, $C$, atau $D$. Disini yang kita pilih untuk di eksplorasi adalah pilihan $C\ 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i}$ $\begin{align} & 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i} \\ & =4 \left [ \left -1 \right ^{0} \left tan\ x \right ^{20}+\left -1 \right ^{1} \left tan\ x \right ^{21} + \left -1 \right ^{2} \left tan\ x \right ^{22} +\cdots \right]\\ & =4 \left[ \left 1 \right \left tan\ x \right ^{0}+\left -1 \right \left tan\ x \right ^{2 }+1 \left tan\ x \right ^{4} +\left -1 \right \left tan\ x \right ^{6} +\cdots \right] \\ & = 4 \left[ 1 + \left -1 \right \left tan\ x \right ^{2 }+\left 1 \right \left tan\ x \right ^{4} +\left -1 \right \left tan\ x \right ^{6} +\cdots \right] \\ \hline & a=1\ \text{dan}\ r=-tan^{2}x \\ & S_{\infty}=\dfrac{a}{1-r} \\ \hline & = 4 \left[ \dfrac{1}{1+ tan^{2}x} \right] \\ & = 4 \left[ \dfrac{1}{sec^{2}x} \right] \\ & = 4 \left[ cos^{2}x \right] \\ \end{align}$ Dari hasil eksplorasi di atas kita peroleh $4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i} = 4 \left[ cos^{2}x \right]$$\therefore$ Pilihan yang sesuai adalah $C\ 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i}$ 25. Soal SBMPTN 2015 Kode 534 *Soal Lengkap Fungsi $f\left x \right= -\sqrt{cos^{2}x+\frac{x}{2}+\pi}$ untuk $- \pi \lt x \lt 2\pi$, turun pada interval... $\begin{align} A\ & 0 \lt x \lt \dfrac{5\pi}{12} \\ B\ & 0 \lt x \lt \dfrac{\pi}{12} \\ C\ & \dfrac{\pi}{6} \lt x \lt \dfrac{\pi}{3} \\ D\ & \dfrac{5\pi}{12} \lt x \lt \dfrac{7\pi}{12} \\ E\ & -\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12} \end{align}$ Alternatif Pembahasan Sedikit catatan turunan fungsi kita tuliskan yaitu untuk $y=\sqrt{fx}$ maka $y'=\dfrac{f'x}{2\sqrt{fx}}$. $\begin{align} f\left x \right &= -\sqrt{cos^{2}x+\frac{x}{2}+\pi} \\ f '\left x \right &= -\dfrac{-2\ cos\ x\ sin\ x + \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \\ &= \dfrac{2\ cos\ x\ sin\ x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \\ &= \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \end{align}$ Agar $f\left x \right$ turun maka $f'\left x \right \lt 0$, sehingga dapat kita tuliskan $\begin{align} f '\left x \right & \lt 0 \\ \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} & \lt 0 \\ \end{align}$ Untuk menentukan penyelesaian pertidaksamaan di atas kita cari pembuat nolnya, yaitu $\begin{align} f '\left x \right & = 0 \\ \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} & = 0 \\ sin\ 2x - \frac{1}{2} & = 0 \\ sin\ 2x & = \frac{1}{2} \\ sin\ 2x & =sin\ \frac{ \pi}{6} \\ \hline 2x & =\frac{ \pi}{6} + k \cdot 2\pi \\ x & =\frac{ \pi}{12} + k \cdot \pi \\ x & =-\frac{11\pi}{12},\frac{ \pi}{12},\frac{13\pi}{12} \\ \hline 2x & =\pi-\frac{\pi}{6} + k \cdot 2\pi \\ 2x & = \frac{5\pi}{6} + k \cdot 2\pi \\ x & = \frac{5\pi}{12} + k \cdot \pi \\ x & =-\frac{7\pi}{12},\frac{5\pi}{12},\frac{17\pi}{12} \end{align}$ Langkah selanjutnya sama seperti menentukan daerah penyelesaian pada pertidaksamaan, yaitu menggambarkannya pada garis bilangan lalu menguji nilai $x$ dan menetukan daerah atau batasan nilai $x$ yang mengakibatkan $f '\left x \right \lt 0$ Tetapi pada saat ini kita coba manganalisa dari pembuat nol yang kita peroleh di atas dan pilihan $A,B,C,D,E$. Pada soal pilihan yang kita uji adalah $E\ -\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12}$ karena hanya pilihan ini yang memuat pembuat nol pada batas atas dan batas bawahnya. Kita uji nilai $x$ dari $-\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12}$ yaitu $x=0$ $\begin{align} f '\left x \right &= \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \\ &= \dfrac{sin\ 20 - \frac{1}{2}}{2\sqrt{cos^{2}0+\frac{0}{2}+\pi}} \\ &= \dfrac{- \frac{1}{2}}{2+\pi} \lt 0 \\ & \text{terbukti}\ f '\left x \right \lt 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ -\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12}$ 26. Soal SBMPTN 2015 Kode 541 *Soal Lengkap Fungsi $f\left x \right= \sqrt{cos^{2}2x+x}$ untuk $ x \gt 0$, naik pada interval... $\begin{align} A\ & \dfrac{4\pi}{12} \lt x \lt \dfrac{13\pi}{12} \\ B\ & \dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24} \\ C\ & \dfrac{7\pi}{6} \lt x \lt \dfrac{11\pi}{6} \\ D\ & \dfrac{5\pi}{24} \lt x \lt \dfrac{11\pi}{24} \\ E\ & \dfrac{5\pi}{12} \lt x \lt \dfrac{11\pi}{12} \end{align}$ Alternatif Pembahasan Sedikit catatan turunan fungsi kita tuliskan yaitu untuk $y=\sqrt{fx}$ maka $y'=\dfrac{f'x}{2\sqrt{fx}}$. $\begin{align} f\left x \right &= \sqrt{cos^{2}2x+x} \\ f '\left x \right &= \dfrac{-2\ cos\ 2x\ \cdot 2 \cdot sin\ 2x + 1}{2\sqrt{cos^{2}2x+x}} \\ &= \dfrac{-4\ cos\ 2x\ sin\ 2x + 1}{2\sqrt{cos^{2}2x+x}} \\ &= \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} \end{align}$ Agar $f\left x \right$ naik maka $f'\left x \right \gt 0$, sehingga dapat kita tuliskan $\begin{align} f '\left x \right & \gt 0 \\ \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} & \gt 0 \\ \end{align}$ Untuk menentukan penyelesaian pertidaksamaan di atas kita cari pembuat nolnya, yaitu $\begin{align} f '\left x \right & = 0 \\ \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} & = 0 \\ -2 sin\ 4x +1 & = 0 \\ 2sin\ 4x & = 1 \\ sin\ 4x & = \dfrac{ 1}{2} \\ sin\ 4x & = sin\ \frac{ \pi}{6} \\ \hline 4x & =\frac{ \pi}{6} + k \cdot 2\pi \\ x & =\frac{ \pi}{24} + k \cdot \frac{ \pi}{2}\\ x & =\frac{\pi}{24},\ \frac{13 \pi}{12},\ \frac{25\pi}{24},\cdots \\ \hline 4x & =\pi-\frac{\pi}{6} + k \cdot 2\pi \\ 4x & = \frac{5\pi}{6} + k \cdot 2\pi \\ x & = \frac{5\pi}{24} + k \cdot \frac{ \pi}{2} \\ x & = \frac{5\pi}{24},\ \frac{17\pi}{24},\ \frac{29\pi}{24},\cdots \end{align}$ Langkah selanjutnya sama seperti menentukan daerah penyelesaian pada pertidaksamaan, yaitu menggambarkannya pada garis bilangan lalu menguji nilai $x$ dan menetukan daerah atau batasan nilai $x$ yang mengakibatkan $f '\left x \right \gt 0$ Tetapi pada saat ini kita coba manganalisa dari pembuat nol yang kita peroleh di atas dan pilihan $A,B,C,D,E$. Pada soal pilihan yang kita uji adalah $B\ \dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24}$ karena hanya pilihan ini yang memuat pembuat nol pada batas atas dan batas bawahnya. Kita uji nilai $x$ dari $\dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24}$ yaitu $x=\dfrac{12\pi}{24}=90$ $\begin{align} f '\left x \right &= \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} \\ &= \dfrac{-2 sin\ 490 +1}{2\sqrt{1+90}} \\ &= \dfrac{0+1}{2\sqrt{1+90}} \\ &= \dfrac{1}{2\sqrt{1+90}} \gt 0 \\ & \text{terbukti}\ f '\left x \right \gt 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ \dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24}$ 26. Soal SBMPTN 2015 Kode 510 *Soal Lengkap Fungsi $f\left x \right= \sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}$ untuk $ -\pi \leq x \leq \pi$, turun pada interval... $\begin{align} A\ & 0 \leq x \leq \dfrac{ \pi}{ 2} \\ B\ & 0 \lt x \lt \pi \\ C\ & -\dfrac{ \pi}{ 3} \leq x \leq 0 \\ D\ & -\dfrac{ \pi}{ 3} \leq x \leq \dfrac{\pi}{3} \\ E\ & -\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4} \end{align}$ Alternatif Pembahasan Sedikit catatan turunan fungsi kita tuliskan yaitu untuk $y=\sqrt{fx}$ maka $y'=\dfrac{f'x}{2\sqrt{fx}}$. $\begin{align} f\left x \right &= \sqrt{2+\frac{x}{\sqrt{2}}-sin\ x} \\ f '\left x \right &= \dfrac{\frac{1}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} \end{align}$ Agar $f\left x \right$ turun maka $f'\left x \right \lt 0$, sehingga dapat kita tuliskan $\begin{align} f '\left x \right & \lt 0 \\ \dfrac{\frac{x}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} & \lt 0 \\ \end{align}$ Untuk menentukan penyelesaian pertidaksamaan di atas kita cari pembuat nolnya, yaitu $\begin{align} f '\left x \right & = 0 \\ \dfrac{\frac{x}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} & = 0 \\ \frac{x}{\sqrt{2}}- cos\ x & = 0 \\ cos\ x & = \frac{x}{\sqrt{2}} \\ cos\ x & = cos\ \frac{ \pi}{4} \\ \hline x & =\frac{ \pi}{4} + k \cdot 2\pi \\ x & =\frac{\pi}{4} \\ \hline x & =-\frac{ \pi}{4} + k \cdot 2\pi \\ x & =-\frac{\pi}{4},\ \frac{7\pi}{4} \\ \end{align}$ Langkah selanjutnya sama seperti menentukan daerah penyelesaian pada pertidaksamaan, yaitu menggambarkannya pada garis bilangan lalu menguji nilai $x$ dan menetukan daerah atau batasan nilai $x$ yang mengakibatkan $f '\left x \right \gt 0$ Tetapi pada saat ini kita coba manganalisa dari pembuat nol yang kita peroleh di atas dan pilihan $A,B,C,D,E$. Pada soal pilihan yang kita uji adalah $E\ -\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4}$ karena hanya pilihan ini yang memuat pembuat nol pada batas atas dan batas bawahnya. Kita uji nilai $x$ dari $-\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4}$ yaitu $x=0$ $\begin{align} f '\left x \right &= \dfrac{\frac{1}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} \\ &= \dfrac{\frac{1}{\sqrt{2}}- cos\ 0}{2\sqrt{2+\frac{0}{\sqrt{2}}-sin\ 0}} \\ &= \dfrac{\frac{1}{\sqrt{2}}- 1}{2\sqrt{2+0-0}} \gt 0 \\ & \text{terbukti}\ f '\left x \right \lt 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ -\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4}$ 27. Soal UMPTN 1996 Rayon A *Soal LengkapPersamaan garis yang tegak lurus garis singgung kurva $y=tan\ x$ di titik $\left \frac{\pi}{4},1 \right$ adalah... $\begin{align} A\ & y=-\dfrac{x}{2}+\dfrac{\pi}{4}+1 \\ B\ & y=-\dfrac{x}{2}+\dfrac{\pi}{8}-1 \\ C\ & y=-\dfrac{x}{2}-\dfrac{\pi}{8}-1 \\ D\ & y=-\dfrac{x}{2}-\dfrac{\pi}{4}-1 \\ E\ & y=-\dfrac{x}{2}+\dfrac{\pi}{8}+1 \end{align}$ Alternatif PembahasanGradien garis singgung kurva $y=tan\ x$ di titik $\left \frac{\pi}{4},1 \right$ adalah $\begin{align} y & = tan\ x \\ m=y' & = sec^{2} x \\ & = \dfrac{1}{cos^{2}\ x} \\ & = \dfrac{1}{cos^{2} \left \frac{\pi}{4} \right} \\ & = \dfrac{1}{\left \frac{1}{2} \sqrt{2} \right^{2}} \\ & = \dfrac{1}{\left \frac{1}{4} \cdot 2 \right} = 2 \end{align}$ Dua garis saling tegak lurus maka perkalian kedua gradien garis adalah $-1$ atau $m_{1} \cdot m_{2}=-1$, sehingga garis yang tegak lurus dengan garis singgung kurva gradiennya adalah $m=-\dfrac{1}{2}$. Persamaan garis yang tegak lurus dengan garis singgung kurva di titik $\left \frac{\pi}{4},1 \right$ dan $m=-\dfrac{1}{2}$ adalah $\begin{align} y-y_{1} & = m \left x-x_{1} \right \\ y-1 & = -\dfrac{1}{2} \left x-\frac{\pi}{4} \right \\ y-1 & = -\dfrac{1}{2}x +\dfrac{\pi}{8} \\ y & = -\dfrac{1}{2}x +\dfrac{\pi}{8}+1 \end{align}$$\therefore$ Pilihan yang sesuai adalah $E\ y=-\dfrac{x}{2}+\dfrac{\pi}{8}+1$ 28. Soal SIMAK UI 2010 Kode 205 *Soal Lengkap Jika diketahui $fx= \left tan x \right$, maka laju perubahan $fx$ pada saat $x=k$, dimana $\dfrac{\pi}{2} \lt x \lt \pi$ akan sama dengan... $\begin{align} A\ & -sin\ k \\ B\ & cos\ k \\ C\ & -sec^{2}\ k \\ D\ & sec^{2}\ k \\ E\ & cot\ k \end{align}$ Alternatif Pembahasan Berdasarkan definisi nilai mutlak fungsi $fx= \left tan x \right$ dapat kita tuliskan, $ \left tan x \right = \left\{\begin{array}{cc} tan x,\ \text{untuk}\ tan x \geq 0 \\ -tan x,\ \text{untuk}\ tan x \lt 0 \end{array} \right.$ Untuk $k=x$ dan $\dfrac{\pi}{2} \lt k \lt \pi$ maka $x$ berada di kuadran II diperoleh $tan x$ bernilai negatif sehingga $fx=- tan\ x$. Laju perubahan $fx$ terhadap $x$ dapat kita tuliskan $\dfrac{dfx}{dx}=-sec^{2}x$, dan laju perubahan $fx$ pada saat $x=k$ adalah $\dfrac{dfk}{dx}=-sec^{2}k$ $\therefore$ Pilihan yang sesuai adalah $C\ -sec^{2}\ k$ 29. Soal SIMAK UI 2010 Kode 208 *Soal Lengkap $y= sin\left sin\left sin\left sin\left \cdots\left sin\left sin\ x \right \right \right \cdots \right \right \right $ Tentukan $\dfrac{dy}{dx}$ pada $x=0$. $\begin{align} A\ & - \infty \\ B\ & -1 \\ C\ & 0 \\ D\ & 1 \\ E\ & \infty \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas kita lakukan dengan beberapa eksplorasi dengan fungsi yang sederhana. Untuk $y=sinx$ $\begin{align} f'x=\dfrac{dy}{dx}\ & =cosx \\ f'0\ & =cos0 \\ = 1 \end{align}$ Untuk $y=sin\left sin\ x \right $ $\begin{align} f'x=\dfrac{dy}{dx}\ & =cos\left sin\ x \right \cdot cosx \\ f'0\ & =cos\left sin\ 0 \right \cdot cos0 \\ & =cos\left 0 \right \cdot 1 \\ & =1 \end{align}$ Untuk $y=sin\left sin \left sin\ x \right \right $ $\begin{align} f'x=\dfrac{dy}{dx}\ & =cos \left sin \left sin\ x \right \right \cdot cos \left sin\ x \right \cdot cosx \\ f'0\ & =cos \left sin \left sin\ 0 \right \right \cdot cos \left sin\ 0 \right \cdot cos0 \\ & =cos \left sin \left 0 \right \right \cdot cos \left 0 \right \cdot 1 \\ & =cos \left 0 \right \cdot 1 \cdot 1 \\ & =1 \cdot 1 \cdot 1 \\ & =1 \end{align}$ Jika kita lakukan eksplorasi pada langkah berikutnya hasilnya juga adalah $1$ dan ini menjawab untuk fungsi $y= sin\left sin\left sin\left sin\left \cdots\left sin\left sin\ x \right \right \right \cdots \right \right \right $ hasilnya adalah $1$. $\therefore$ Pilihan yang sesuai adalah $C\ 1$ 30. Soal UMPTN 1991 *Soal Lengkap Nilai maksimum dari $fx= 2\ cos\ 2x + 4\ sin\ x$ untuk $0 \lt x \lt \pi$, adalah... $\begin{align} A\ & 2 \\ B\ & 3 \\ C\ & 4 \\ D\ & -6 \\ E\ & -12 \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas kita coba selesaikan dengan uji turunan pertama $f'x= 0$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f'x & = -4\ sin\ 2x + 4\ cos\ x \end{align}$ Untuk $f'x=0$, kita peroleh $\begin{align} -4\ sin\ 2x + 4\ cos\ x & = 0 \\ -4\ 2\ sin\ x\ cos\ x + 4\ cos\ x & = 0 \\ -4\ cos\ x \left2\ sin\ x - 1 \right & = 0 \\ -4\ cos\ x= 0\ \text{atau}\ 2\ sin\ x - 1 & = 0 \\ cos\ x= 0\ \text{atau}\ sin\ x & = \frac{1}{2} \\ \end{align}$ Untuk $0 \lt x \lt \pi$ kita peroleh Saat $cos\ x= 0$ nilai $x$ yang memenuhi adalah $x=90^{\circ}$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f \left 90^{\circ} \right & = 2\ cos\ 2\left 90^{\circ} \right + 4\ sin\ \left 90^{\circ} \right \\ & = 2\ cos\ 180^{\circ} + 4 sin\ 90^{\circ} \\ & = 2\ \left -1 \right + 4 \left 1 \right = 2 \end{align}$ Saat $sin\ x = \dfrac{1}{2}$ nilai $x$ yang memenuhi adalah $x=30^{\circ}, 150^{\circ}$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f \left 30^{\circ} \right & = 2\ cos\ 2\left 30^{\circ} \right + 4\ sin\ \left 30^{\circ} \right \\ & = 2\ cos\ 60^{\circ} + 4 sin\ 30^{\circ} \\ & = 2\ \left \frac{1}{2} \right + 4 \left \frac{1}{2} \right = 3 \end{align}$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f \left 150^{\circ} \right & = 2\ cos\ 2\left 150^{\circ} \right + 4\ sin\ \left 150^{\circ} \right \\ & = 2\ cos\ 300^{\circ} + 4\ sin\ 150^{\circ} \\ & = 2\ \left \frac{1}{2} \right + 4\ \left \frac{1}{2} \right = 3 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ 3$ 31. Soal UMPTN 1992 *Soal Lengkap Diketahui $fx= \dfrac{2+cos\ x}{sin\ x}$. Garis singgung grafiknya pada $x=\dfrac{\pi}{2}$ memotong sumbu $y$ di titik $\left 0,b \right$, nilai $b$ yang memenuhi adalah... $\begin{align} A\ & 2 \\ B\ & \dfrac{\pi}{2} \\ C\ & -2+\dfrac{\pi}{2} \\ D\ & 2-\dfrac{\pi}{2} \\ E\ & 2+\dfrac{\pi}{2} \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas kita coba selesaikan dengan uji turunan pertama, dimana kita ketahui bahwa gradien garis singgung $m=f'x$. $\begin{align} fx & = \dfrac{2+cos\ x}{sin\ x} \\ \hline u = 2+cos\ x & \rightarrow u'=-sin\ x \\ v = sin\ x & \rightarrow u'=cos\ x \\ \hline f'x & = \dfrac{u' \cdot v - u \cdot v' }{v^{2}} \\ & = \dfrac{\left -sin\ x \right\left sin\ x \right-\left 2+cos\ x \right\left cos\ x \right}{sin^{2} x} \\ & = \dfrac{ -sin^{2} x -2cos\ x - cos^{2} x }{sin^{2} x} \\ & = \dfrac{ - \leftsin^{2} x 2cos\ x + cos^{2} x \right }{sin^{2} x} \\ & = \dfrac{ -\left1 +2cos\ x \right}{sin^{2} x} \end{align}$ Gradien garis singgung $m=f'x$ saat $x=\dfrac{\pi}{2}$ adalah $\begin{align} m & = \dfrac{ -\left1 +2cos\ x \right}{sin^{2} x} \\ & = \dfrac{ -\left1 +2cos\ \frac{\pi}{2} \right}{sin^{2} \frac{\pi}{2}} \\ & = \dfrac{ -\left1 +2 \cdot 0 \right}{1^{2}} = -1 \end{align}$ Untuk $x=\dfrac{\pi}{2}$, kita peroleh $y=fx$, yaitu $\begin{align} y & = \dfrac{2+cos\ x}{sin\ x} \\ & = \dfrac{2+cos\ \frac{\pi}{2}}{sin\ \frac{\pi}{2}} \\ & = \dfrac{2+ 0}{1} 2 \end{align}$ Persamaan garis singgung yang melelui titik $\left \frac{\pi}{2}, 2 \right$ dan gradien $m=-1$ adalah $\begin{align} y-y_{1} & = m \left x -x_{1} \right \\ y-2 & = -1 \left x - \frac{\pi}{2} \right \\ y-2 & = -x + \frac{\pi}{2} \\ y & = -x + \frac{\pi}{2} +2 \end{align}$ Memotong sumbu $y$ adalah pada saat $x=0$, yaitu $\left 0, \frac{\pi}{2} +2 \right$ $\therefore$ Pilihan yang sesuai adalah $E\ \frac{\pi}{2} +2 $ Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras Beberapa pembahasan soal Turunan Fungsi Trigonometri di atas adalah coretan kreatif siswa pada lembar jawaban penilaian harian matematika, lembar jawaban penilaian akhir semester matematika, presentasi hasil diskusi matematika atau pembahasan quiz matematika di kelas. Untuk segala sesuatu hal yang perlu kita diskusikan terkait 30+ Soal dan Pembahasan Matematika Dasar SMA Turunan Fungsi Trigonometri silahkan disampaikan 🙏 CMIIW😊. Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Soaldan pembahasan turunan fungsi trigonometri. Salah satu persamaan garis singgung yang melalui titik potong kurva dan garis tersebut adalah. Jika ada request materi/soal silahkan ajukan ya. Biar kamu ngerti tentang materi ini, yang pertama kali perlu kamu lakuin adalah memahami tentang pengertiannya. Teorema turunan fungsi trigonometri

Turunan fungsi trigonometri adalah bentuk persamaan fungsi trigonometri yang mengalami proses metamatis operasi turunan. Simbol turunan pertama dari fungsi y terhadap x dinyatakan dalam dy/dx atau biasanya lebih sering menggunakan tanda -petik satu- y’. Diketahui bahwa ada tiga fungsi trigonometri dasar yaitu sinus y = sin x, cosinus y = cos x; dan tangen y = tan x. Turunan fungsi trigonometri untuk ketiga fungsi tersebut berturut-turut adalah y’ = cos x; y’ = ‒sin x; dan y’ = cot x Hasil turunan fungsi trigonometri diperoleh dari definisi umum turunan yang menyatakan nilai limit pada suatu titik. Bagaimana penggunaan definisi turunan untuk mendapatkan turunan pertama fungsi trigonometri? Bagaimana cara menentukan turunan fungsi trigonometri? Sobat idschool dapat mencari tahu caranya melalui ulasan dibawah. Table of Contents Definisi Turunan Contoh Cara Mendapatkan Turunan Fungsi Trigonometri Contoh Soal dan Pembahasan Contoh 1 – Soal Turunan Fungsi Trigonometri Contoh 2 – Soal Turunan Fungsi Contoh 3 – Soal Turunan Fungsi Contoh 4 – Soal Turunan Fungsi Baca Juga Materi Dasar Turunan Fungsi dan Teorema/Aturan Penting di Dalamnya Definisi Turunan Turunan suatu fungsi berawal dari sebuah permasalahan yang berkaitan dengan garis singgung. Nilai turunan didekati dengan konsep limit untuk suatu selang nilai mendekati nol. Definisi turunan pertama suatu fungsi fx adalah fungsi lain f’x dibaca f aksen yang nilainya pada sebarang bilangan c adalah f’c. Definisi turunan tersebut secara matematis dapat dituliskan melalui persamaan berikut. Dari definisi turunan tersebut dapat digunakan untuk menentukan turunan berbagai fungsi, termasuk fungsi trigonometri. Contoh Cara Mendapatkan Turunan Fungsi Trigonometri Sebagai contoh, diketahui fungsi fx = sin x memiliki hasil turunan fungsi trigonometri f'x = cos x. Turunan pertama fungsi fx tersebut dapat diperoleh dengan cara substitusi fx = sin x dan fx+h = sin x+h pada definisi turunan. Dengan mengambil nilai limit h mendekati 0 h→0 maka akan diperoleh hasil turunan fungsi fx = sin x. Cara mendapatkan hasil turunan fungsi trigonometri fx = sin x terdapat pada penyelesaian cara berikut. Baca Juga Cara Menentukan Nilai Limit Suatu Fungsi Trigonometri Hasil akhir dari proses tersebut menunjukkan bahwa turunan fx = sin x adalah f’x = cos x. Dengan cara yang sama dapat diperoleh bahwa turunan dari fx = cos x adalah f’x = –sin x. Cara mendapatkan mendapatkan hasil turunan menggunakan definisi turunan untuk fungsi trigonemetri yang lebih kompleks tentu akan menjadi rumit. Sehingga diperlukan cara lain untuk mendapatkan hasil turunan fungsi trigonometri dengan berbagai bentuk bahkan untuk fungsi yang sangat kompleks. Cara yang lebih baik untuk digunakan adalah menggunakan beberapa teorema turunan dan hasil turunan fungsi trigonometri bentuk dasar. Dengan cara ini dapat diperoleh hasil turunan fungsi dengan cara lebih baik. Ada enam bentuk fungsi trigonometri dasar dan hasil turunannya yang perlu diingat. Keenam fungsi tersebut adalah fungsi sinus sin x; cosinus cos x; tangen tan x; cotangan cotan x; secan sec x; dan cosecan cosec x. Fungsi dan turunan keenam fungsi trigonometri bentuk dasar tersebut diberikan seperti tabel berikut. Selain enam rumus dasar, beberapa hasil turunan fungsi trigonometri yang perlu juga diketahui diberikan pada daftar berikut. y = sin axy’ = a cos axy = p sin xy’ = p cos x y = cos bxy’ = b cos bxy = q sin xy’ = q cos x y = sin ax + cos bxy’ = a cos ax ‒ b sin ax Beberapa hasil turunan rumus fungsi trigonometri bentuk dasar di atas akan mempermudah mengerjakan soal turunan fungsi trigonometri yang lebih sulit. Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan sebagai tolak ukur pemahaman bahasan di atas. Contoh-contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahsan tersebut sebagai parameter keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Turunan Fungsi Trigonometri Turunan pertama dari fx = 3 sin x ‒ 4 cos x + 2 adalah ….A. 3 cos x + 4 sin xB. 3 sin x + 4 cos xC. ‒3 cos x + 4 cos xD. 3 cos x ‒ 4 sin xE. ‒3 cos x ‒ 4 cos x PembahasanTurunan pertama fungsi fx = 3 sin x ‒ 4 cos x + 2 ditunjukkan seperti cara berikut. Turunan fungsi fxf’x = d3 sin x/dx ‒ d4 cos x/dx + d2/dxf’x = 3dsin x/dx ‒ 4dcos x/dx + 0f’x = 3cos x ‒ 4‒sin xf’x = 3cos x + 4sin x Jadi, turunan pertama dari fx = 3 sin x ‒ 4 cos x + 2 adalah 3cos x + 4sin A Contoh 2 – Soal Turunan Fungsi Turunan pertama dari y = 1/4 sin 4x adalah ….A. –1/4 cos 4xB. 1/4 cos 4xC. –4 cos 4xD. cos 4xE. 4 cos 4x PembahasanUntuk menentukan turunan pertama dari fungsi tersebut dilakukan dengan aturan rantai dan informasi turunan pertama fungsi y = sin x adalah y’ = cos x. Misalkan u = 4x → y = 1/4 sin u Sehingga, dapat dipeorleh nilai dy/du dan du/dx seperti berikut. dy/du = 1/4 cos udu/dx = 4 Mencari turunan pertama fungsi y = 1/4 sin 4xdy/dx = dy/du du/dxdy/dx = 1/4 cos u 4dy/dx = 4 1/4 cos u = cos 4x Jadi, turunan pertama dari y = 1/4 sin 4x adalah cos D Contoh 3 – Soal Turunan Fungsi PembahasanBentuk soal yang diberikan di atas dapat diselesaikan dengan teknik yang sama dengan penyelesaian contoh 1. Di sini digunakan pemisalan u = 2x–5/3x–1 sehingga fx = cos2u. Cara mencari turunan pertama fungsi fx ditunjukkan seperti cara penyelesaian di bawah. Jadi, turunan dari fx = cos2 2x‒5/3x‒1 adalah ‒13/3x‒12 sin 22x‒5/3x‒1. Jawaban B Contoh 4 – Soal Turunan Fungsi Turunan pertama dari fungsi fx = cos32x adalah ….A. 6 cos22x sin 2xB. ‒6 cos22x sin 2xC. ‒6 cos 2x sin 2xD. 3 cos 2x sin 4xE. ‒3 cos 2x sin 2x PembahasanTurunan pertama fx = cos32x dapat diselesaikan dengan aturan rantai seperti penyelesaian berikut. Misalkanu = 2x → du/dx = 2v = cos u → dv/du = ‒sin u Turunan fx = cos32xfx = cos32x = v3f’x = dfx/dv × dv/du × du/dxf’x = 3v2 × ‒sin u × 2f’x = 3 × cos2u × ‒sin u × 2f’x = ‒6 cos22x sin 2x Jadi, turunan pertama dari fungsi fx = cos32x adalah ‒6 cos22x sin B Demikianlah tadi bahasan materi turunan fungsi trigonometri yang dilengkapi dengan contoh soal beserta pembahasan. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Aplikasi Turunan – Mencari Luas Maksimum/Minimum Suatu Daerah WLvUnT.
  • adlkav7bjt.pages.dev/886
  • adlkav7bjt.pages.dev/669
  • adlkav7bjt.pages.dev/203
  • adlkav7bjt.pages.dev/648
  • adlkav7bjt.pages.dev/703
  • adlkav7bjt.pages.dev/263
  • adlkav7bjt.pages.dev/451
  • adlkav7bjt.pages.dev/656
  • adlkav7bjt.pages.dev/631
  • adlkav7bjt.pages.dev/810
  • adlkav7bjt.pages.dev/386
  • adlkav7bjt.pages.dev/393
  • adlkav7bjt.pages.dev/292
  • adlkav7bjt.pages.dev/75
  • adlkav7bjt.pages.dev/227
  • soal dan pembahasan turunan fungsi trigonometri